Extrapolating a hierarchy of building Block systems towards future neural network organisms

Acta Biotheoretica 49 (3) (2001)
It is possible to predict future life forms? In this paper it is argued that the answer to this question may well be positive. As a basis for predictions a rationale is used that is derived from historical data, e.g. from a hierarchical classification that ranks all building block systems, that have evolved so far. This classification is based on specific emergent properties that allow stepwise transitions, from low level building blocks to higher level ones. This paper shows how this hierarchy can be used for predicting future life forms.The extrapolations suggest several future neural network organisms. Major aspects of the structures of these organisms are predicted. The results can be considered of fundamental importance for several reasons. Firstly, assuming that the operator hierarchy is a proper basis for predictions, the result yields insight into the structure of future organisms. Secondly, the predictions are not extrapolations of presently observed trends, but are fully integrated with all historical system transitions in evolution. Thirdly, the extrapolations suggest the structures of intelligences that, one day, will possess more powerful brains than human beings.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,433
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #355,283 of 1,925,069 )

Recent downloads (6 months)

2 ( #308,563 of 1,925,069 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.