Properties and Consequences of Thorn-Independence

Journal of Symbolic Logic 71 (1):1 - 21 (2006)
We develop a new notion of independence (þ-independence, read "thorn"-independence) that arises from a family of ranks suggested by Scanlon (þ-ranks). We prove that in a large class of theories (including simple theories and o-minimal theories) this notion has many of the properties needed for an adequate geometric structure. We prove that þ-independence agrees with the usual independence notions in stable, supersimple and o-minimal theories. Furthermore, we give some evidence that the equivalence between forking and þ-forking in simple theories might be closely related to one of the main open conjectures in simplicity theory, the stable forking conjecture. In particular, we prove that in any simple theory where the stable forking conjecture holds. þ-independence and forking independence agree
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2178/jsl/1140641160
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 34,959
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Simple Theories.Byunghan Kim & Anand Pillay - 1996 - Annals of Pure and Applied Logic 88 (2):149-164.

Add more references

Citations of this work BETA

On Lovely Pairs of Geometric Structures.Alexander Berenstein & Evgueni Vassiliev - 2010 - Annals of Pure and Applied Logic 161 (7):866-878.
Pseudo Real Closed Fields, Pseudo P-Adically Closed Fields and NTP2.Samaria Montenegro - 2017 - Annals of Pure and Applied Logic 168 (1):191-232.

View all 10 citations / Add more citations

Similar books and articles

Theories with Equational Forking.Markus Junker & Ingo Kraus - 2002 - Journal of Symbolic Logic 67 (1):326-340.
Geometry of Forking in Simple Theories.Assaf Peretz - 2006 - Journal of Symbolic Logic 71 (1):347 - 359.
Forking and Independence in o-Minimal Theories.Alfred Dolich - 2004 - Journal of Symbolic Logic 69 (1):215-240.
Discouraging Results for Ultraimaginary Independence Theory.Itay Ben-Yaacov - 2003 - Journal of Symbolic Logic 68 (3):846-850.
Simplicity, and Stability in There.Byunghan Kim - 2001 - Journal of Symbolic Logic 66 (2):822-836.
Independence Accounts of Substance and Substantial Parts.Patrick Toner - 2011 - Philosophical Studies 155 (1):37 - 43.
A Geometric Introduction to Forking and Thorn-Forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
Logical Independence in Quantum Logic.Miklos Redei - 1995 - Foundations of Physics 25 (3):411-422.
Thorn-Forking as Local Forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):21-38.
Forking and Fundamental Order in Simple Theories.Daniel Lascar & Anand Pillay - 1999 - Journal of Symbolic Logic 64 (3):1155-1158.
Independence Property and Hyperbolic Groups.Eric Jaligot, Alexey Muranov & Azadeh Neman - 2008 - Bulletin of Symbolic Logic 14 (1):88 - 98.


Added to PP index

Total downloads
18 ( #326,667 of 2,273,448 )

Recent downloads (6 months)
4 ( #110,967 of 2,273,448 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature