Abstract
We define the Scott complexity of a countable structure to be the least complexity of a Scott sentence for that structure. This is a finer notion of complexity than Scott rank: it distinguishes between whether the simplest Scott sentence is $\Sigma _{\alpha }$, $\Pi _{\alpha }$, or $\mathrm {d-}\Sigma _{\alpha }$. We give a complete classification of the possible Scott complexities, including an example of a structure whose simplest Scott sentence is $\Sigma _{\lambda + 1}$ for $\lambda $ a limit ordinal. This answers a question left open by A. Miller.We also construct examples of computable structures of high Scott rank with Scott complexities $\Sigma _{\omega _1^{CK}+1}$ and $\mathrm {d-}\Sigma _{\omega _1^{CK}+1}$. There are three other possible Scott complexities for a computable structure of high Scott rank: $\Pi _{\omega _1^{CK}}$, $\Pi _{\omega _1^{CK}+1}$, $\Sigma _{\omega _1^{CK}+1}$. Examples of these were already known. Our examples are computable structures of Scott rank $\omega _1^{CK}+1$ which, after naming finitely many constants, have Scott rank $\omega _1^{CK}$. The existence of such structures was an open question.