The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences (2nd edition)

Mumbai: DBA Publishing (Second Edition) (2024)
  Copy   BIBTEX

Abstract

In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines.

Other Versions

original Anand, Bhupinder Singh (forthcoming) "The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences".

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A constructive analysis of learning in Peano Arithmetic.Federico Aschieri - 2012 - Annals of Pure and Applied Logic 163 (11):1448-1470.
Markov's Rule revisited.Daniel Leivant - 1990 - Archive for Mathematical Logic 30 (2):125-127.

Analytics

Added to PP
2021-01-25

Downloads
1,723 (#6,753)

6 months
751 (#1,426)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

References found in this work

Tractatus logico-philosophicus.Ludwig Wittgenstein - 1922 - Filosoficky Casopis 52:336-341.
The logical syntax of language.Rudolf Carnap - 1937 - London,: K. Paul, Trench, Trubner & co.. Edited by Amethe Smeaton.
On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
Tractatus Logico-Philosophicus.Ludwig Wittgenstein - 1956 - Revista Portuguesa de Filosofia 12 (1):109-110.
Mathematical logic.Joseph Robert Shoenfield - 1967 - Reading, Mass.,: Addison-Wesley.

View all 54 references / Add more references