Indestructibility and destructible measurable cardinals

Archive for Mathematical Logic 55 (1-2):3-18 (2016)
  Copy   BIBTEX

Abstract

Say that κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}’s measurability is destructible if there exists a κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}. It then follows that A1={δ<κ∣δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{1} = \{\delta < \kappa \mid \delta}$$\end{document} is measurable, δ is not a limit of measurable cardinals, δ is not δ+ strongly compact, and δ’s measurability is destructible when forcing with partial orderings having rank below λδ} is unbounded in κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}. On the other hand, under the same hypotheses, A2={δ<κ∣δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{2} = \{\delta < \kappa \mid \delta}$$\end{document} is measurable, δ is not a limit of measurable cardinals, δ is not δ+ strongly compact, and δ′s measurability is indestructible when forcing with either Add or Add} is unbounded in κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document} as well. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two distinct models in which either A1=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{1} = \emptyset}$$\end{document} or A2=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{2} = \emptyset}$$\end{document}. In each of these models, both of which have restricted large cardinal structures above κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, every measurable cardinal δ which is not a limit of measurable cardinals is δ+ strongly compact, and there is an indestructibly supercompact cardinal κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}. In the model in which A1=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{1} = \emptyset}$$\end{document}, every measurable cardinal δ which is not a limit of measurable cardinals is <λδ strongly compact and has its <λδ strong compactness indestructible when forcing with δ-directed closed partial orderings having rank below λδ. The choice of the least beth fixed point above δ is arbitrary, and other values of λδ are also possible.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,349

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On the indestructibility aspects of identity crisis.Grigor Sargsyan - 2009 - Archive for Mathematical Logic 48 (6):493-513.
On measurable limits of compact cardinals.Arthur W. Apter - 1999 - Journal of Symbolic Logic 64 (4):1675-1688.
Weakly measurable cardinals.Jason A. Schanker - 2011 - Mathematical Logic Quarterly 57 (3):266-280.
An equiconsistency for universal indestructibility.Arthur W. Apter & Grigor Sargsyan - 2010 - Journal of Symbolic Logic 75 (1):314-322.
Patterns of compact cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.
Forcing indestructibility of MAD families.Jörg Brendle & Shunsuke Yatabe - 2005 - Annals of Pure and Applied Logic 132 (2):271-312.
Some structural results concerning supercompact cardinals.Arthur W. Apter - 2001 - Journal of Symbolic Logic 66 (4):1919-1927.

Analytics

Added to PP
2015-12-13

Downloads
22 (#688,104)

6 months
8 (#352,434)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Indestructibility and the linearity of the Mitchell ordering.Arthur W. Apter - 2024 - Archive for Mathematical Logic 63 (3):473-482.

Add more citations

References found in this work

Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
The negation of the singular cardinal hypothesis from o(K)=K++.Moti Gitik - 1989 - Annals of Pure and Applied Logic 43 (3):209-234.

View all 19 references / Add more references