Variations on a theme by Weiermann

Journal of Symbolic Logic 63 (3):897-925 (1998)
Abstract
Weiermann [18] introduces a new method to generate fast growing functions in order to get an elegant and perspicuous proof of a bounding theorem for provably total recursive functions in a formal theory, e.g., in PA. His fast growing function θαn is described as follows. For each ordinal α and natural number n let T α n denote a finitely branching, primitive recursive tree of ordinals, i.e., an ordinal as a label is attached to each node in the tree so that the labelling is compatible with the tree ordering. Then the tree T α n is well founded and hence finite by Konig's lemma. Define θαn=the depth of the tree T α n =the length of the longest branch in T α n . We introduce new fast and slow growing functions in this mode of definitions and show that each of these majorizes provably total recursive functions in PA
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2586719
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 26,188
Through your library
References found in this work BETA
Elementary Descent Recursion and Proof Theory.Harvey Friedman & Michael Sheard - 1995 - Annals of Pure and Applied Logic 71 (1):1-45.
Proof-Theoretic Analysis of Termination Proofs.Wilfried Buchholz - 1995 - Annals of Pure and Applied Logic 75 (1-2):57-65.
Transfinite Induction Within Peano Arithmetic.Richard Sommer - 1995 - Annals of Pure and Applied Logic 76 (3):231-289.
A Slow Growing Analogue to Buchholz' Proof.Toshiyasu Arai - 1991 - Annals of Pure and Applied Logic 54 (2):101-120.

View all 7 references / Add more references

Citations of this work BETA
2004 Summer Meeting of the Association for Symbolic Logic.Wolfram Pohlers - 2005 - Bulletin of Symbolic Logic 11 (2):249-312.

Add more citations

Similar books and articles

Monthly downloads

Added to index

2009-01-28

Total downloads

10 ( #424,116 of 2,153,834 )

Recent downloads (6 months)

1 ( #398,274 of 2,153,834 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Order:
There  are no threads in this forum
Nothing in this forum yet.

Other forums