Synthese 200 (1):1-15 (2022)

Vincent Ardourel
IHPST: Institut D'histoire Et de Philosophie Des Sciences Et Des Techniques
Can Brownian motion arise from a deterministic system of particles? This paper addresses this question by analysing the derivation of Brownian motion as the limit of a deterministic hard-spheres gas with Lanford’s theorem. In particular, we examine the role of the Boltzmann-Grad limit in the loss of memory of the deterministic system and compare this derivation and the derivation of Brownian motion with the Langevin equation.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.1007/s11229-022-03577-2
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Translate to english
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 71,436
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Compendium of the Foundations of Classical Statistical Physics.Jos Uffink - 2005 - In Jeremy Butterfield & John Earman (eds.), Handbook of the Philosophy of Physics. Elsevier.
Bluff Your Way in the Second Law of Thermodynamics.Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (3):305-394.

View all 14 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Arithmetical Representations of Brownian Motion I.Willem Fouche - 2000 - Journal of Symbolic Logic 65 (1):421-442.
Arithmetical Representations of Brownian Motion I.Willem Fouché - 2000 - Journal of Symbolic Logic 65 (1):421-442.
Brownian Movement and Microscopic Irreversibility.L. G. M. Gordon - 1981 - Foundations of Physics 11 (1-2):103-113.
Short-Time Stochastic Electron.Paul D. Raskin - 1978 - Foundations of Physics 8 (1-2):31-44.
The Case of Brownian Motion.Roberto Maiocchi - 1990 - British Journal for the History of Science 23 (3):257-283.
Słabe łamanie ergodyczności vs. determinizm.Andrzej Fuliński - 2015 - Zagadnienia Filozoficzne W Nauce 59:83-100.
Fluctuating world of Marian Smoluchowski.Fuliński Andrzej - 2017 - Philosophical Problems in Science 62:127-138.


Added to PP index

Total views
2 ( #1,453,624 of 2,519,861 )

Recent downloads (6 months)
2 ( #270,671 of 2,519,861 )

How can I increase my downloads?


My notes