Journal of Philosophical Logic 43 (2-3):209-238 (2014)
Authors |
|
Abstract |
We show that basic hybridization makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[email protected]_i$\end{document} in propositional and first-order hybrid logic. This means: interpret \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[email protected]_i\alpha _a$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _a$\end{document} is an expression of any type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a$\end{document}, as an expression of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a$\end{document} that rigidly returns the value that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_a$\end{document} receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
ISBN(s) | |
DOI | 10.1007/s10992-012-9260-4 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Generalized Quantifiers and Natural Language.John Barwise & Robin Cooper - 1981 - Linguistics and Philosophy 4 (2):159--219.
A Formulation of the Simple Theory of Types.Alonzo Church - 1940 - Journal of Symbolic Logic 5 (2):56-68.
A New Introduction to Modal Logic.Paolo Crivelli, Timothy Williamson, G. E. Hughes & M. J. Cresswell - 1998 - Philosophical Review 107 (3):471.
View all 23 references / Add more references
Citations of this work BETA
Completeness: From Gödel to Henkin.Maria Manzano & Enrique Alonso - 2014 - History and Philosophy of Logic 35 (1):1-26.
Reichenbach, Prior and Hybrid Tense Logic.Patrick Blackburn & Klaus Frovin Jørgensen - 2016 - Synthese 193 (11):3677-3689.
Completeness in Equational Hybrid Propositional Type Theory.Maria Manzano, Manuel Martins & Antonia Huertas - 2019 - Studia Logica 107 (6):1159-1198.
Completeness in Equational Hybrid Propositional Type Theory.Maria Manzano, Manuel Martins & Antonia Huertas - 2019 - Studia Logica 107 (6):1159-1198.
The Logic of Imaginary Scenarios.Joan Casas-Roma, Antonia Huertas & M. Elena Rodríguez - 2020 - Logic Journal of the IGPL 28 (3):363-388.
View all 7 citations / Add more citations
Similar books and articles
Completeness in Hybrid Type Theory.Carlos Areces, Patrick Blackburn, Antonia Huertas & María Manzano - 2013 - Journal of Philosophical Logic (2-3):1-30.
Hybrid Type Theory: A Quartet in Four Movements.Carlos Areces, Patrick Blackburn, Antonia Huertas & María Manzano - 2011 - Principia: An International Journal of Epistemology 15 (2):225.
Hybrid Type Theory: A Quartet in Four Movements DOI:10.5007/1808-1711.2011v15n2p225.Carlos Areces, Patrick Blackburn, Antonia Huertas & María Manzano - 2011 - Principia: An International Journal of Epistemology 15 (2):225-247.
Completeness: From Gödel to Henkin.Maria Manzano & Enrique Alonso - 2014 - History and Philosophy of Logic 35 (1):1-26.
Pure Extensions, Proof Rules, and Hybrid Axiomatics.Patrick Blackburn & Balder Ten Cate - 2006 - Studia Logica 84 (2):277-322.
Hybrid Identities and Hybrid Equational Logic.Klaus Denecke - 1995 - Mathematical Logic Quarterly 41 (2):190-196.
A Hilbert-Style Axiomatisation for Equational Hybrid Logic.Luís S. Barbosa, Manuel A. Martins & Marta Carreteiro - 2014 - Journal of Logic, Language and Information 23 (1):31-52.
Remarks on Gregory's “Actually” Operator.Patrick Blackburn & Maarten Marx - 2002 - Journal of Philosophical Logic 31 (3):281-288.
Hybrid Logics with Infinitary Proof Systems.Rineke Verbrugge, Gerard Renardel de Lavalette & Barteld Kooi - unknown
Hybrid Logics with Sahlqvist Axioms.Balder Cate, Maarten Marx & Petrúcio Viana - 2005 - Logic Journal of the IGPL 13 (3):293-300.
Special Issue on Hybrid Logics.Carlos Areces & Patrick Blackburn - 2010 - Journal of Applied Logic 8 (4):303-304.
Hybrid Counterfactual Logics David Lewis Meets Arthur Prior Again.Katsuhiko Sano - 2009 - Journal of Logic, Language and Information 18 (4):515-539.
Remarks on Gregory's" Actually" Operator.Blackburn Patrick & Marx Maarten - 2002 - Journal of Philosophical Logic 31 (3):281-288.
Analytics
Added to PP index
2017-06-22
Total views
19 ( #581,842 of 2,505,144 )
Recent downloads (6 months)
1 ( #416,587 of 2,505,144 )
2017-06-22
Total views
19 ( #581,842 of 2,505,144 )
Recent downloads (6 months)
1 ( #416,587 of 2,505,144 )
How can I increase my downloads?
Downloads