Journal of Philosophical Logic 43 (2-3):209-238 (2014)

María Manzano
Universidad de Salamanca
Patrick Blackburn
Roskilde University
We show that basic hybridization makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[email protected]_i$\end{document} in propositional and first-order hybrid logic. This means: interpret \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[email protected]_i\alpha _a$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _a$\end{document} is an expression of any type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a$\end{document}, as an expression of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a$\end{document} that rigidly returns the value that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_a$\end{document} receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/s10992-012-9260-4
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 69,979
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Generalized Quantifiers and Natural Language.John Barwise & Robin Cooper - 1981 - Linguistics and Philosophy 4 (2):159--219.
Generalized Quantifiers and Natural Language.Jon Barwise - 1980 - Linguistics and Philosophy 4:159.
Completeness in the Theory of Types.Leon Henkin - 1950 - Journal of Symbolic Logic 15 (2):81-91.
A Formulation of the Simple Theory of Types.Alonzo Church - 1940 - Journal of Symbolic Logic 5 (2):56-68.

View all 23 references / Add more references

Citations of this work BETA

Completeness: From Gödel to Henkin.Maria Manzano & Enrique Alonso - 2014 - History and Philosophy of Logic 35 (1):1-26.
The Logic of Imaginary Scenarios.Joan Casas-Roma, Antonia Huertas & M. Elena Rodríguez - 2020 - Logic Journal of the IGPL 28 (3):363-388.

View all 7 citations / Add more citations

Similar books and articles

Hybrid Type Theory: A Quartet in Four Movements.Carlos Areces, Patrick Blackburn, Antonia Huertas & María Manzano - 2011 - Principia: An International Journal of Epistemology 15 (2):225.
Completeness: From Gödel to Henkin.Maria Manzano & Enrique Alonso - 2014 - History and Philosophy of Logic 35 (1):1-26.
Hybrid Identities and Hybrid Equational Logic.Klaus Denecke - 1995 - Mathematical Logic Quarterly 41 (2):190-196.
Remarks on Gregory's “Actually” Operator.Patrick Blackburn & Maarten Marx - 2002 - Journal of Philosophical Logic 31 (3):281-288.
Meeting Strength in Substructural Logics.Yde Venema - 1995 - Studia Logica 54 (1):3-32.
Hybrid Logics with Sahlqvist Axioms.Balder Cate, Maarten Marx & Petrúcio Viana - 2005 - Logic Journal of the IGPL 13 (3):293-300.
Special Issue on Hybrid Logics.Carlos Areces & Patrick Blackburn - 2010 - Journal of Applied Logic 8 (4):303-304.
Hybrid Completeness.P. Blackburn & M. Tzakova - 1998 - Logic Journal of the IGPL 6 (4):625-650.
Hybrid Counterfactual Logics David Lewis Meets Arthur Prior Again.Katsuhiko Sano - 2009 - Journal of Logic, Language and Information 18 (4):515-539.
Remarks on Gregory's" Actually" Operator.Blackburn Patrick & Marx Maarten - 2002 - Journal of Philosophical Logic 31 (3):281-288.


Added to PP index

Total views
19 ( #581,842 of 2,505,144 )

Recent downloads (6 months)
1 ( #416,587 of 2,505,144 )

How can I increase my downloads?


My notes