Density results in the Δ 2 0 e-degrees
Archive for Mathematical Logic 40 (8):597-614 (2001)
Abstract
We show that the Δ0 2 enumeration degrees are dense. We also show that for every nonzero n-c. e. e-degree a, with n≥ 3, one can always find a nonzero 3-c. e. e-degree b such that b < a on the other hand there is a nonzero ωc. e. e-degree which bounds no nonzero n-c. e. e-degreeDOI
10.1007/s001530100078
My notes
Similar books and articles
Bounding Nonsplitting Enumeration Degrees.Thomas F. Kent & Andrea Sorbi - 2007 - Journal of Symbolic Logic 72 (4):1405 - 1417.
Joining to high degrees via noncuppables.Jiang Liu & Guohua Wu - 2010 - Archive for Mathematical Logic 49 (2):195-211.
The limitations of cupping in the local structure of the enumeration degrees.Mariya I. Soskova - 2010 - Archive for Mathematical Logic 49 (2):169-193.
Bounding and Nonbounding Minimal Pairs in the Enumeration Degrees.S. Barry Cooper, Angsheng Li, Andrea Sorbi & Yue Yang - 2005 - Journal of Symbolic Logic 70 (3):741 - 766.
On Downey's conjecture.Marat M. Arslanov, Iskander Sh Kalimullin & Steffen Lempp - 2010 - Journal of Symbolic Logic 75 (2):401-441.
Topological aspects of the Medvedev lattice.Andrew Em Lewis, Richard A. Shore & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):319-340.
Prime models of computably enumerable degree.Rachel Epstein - 2008 - Journal of Symbolic Logic 73 (4):1373-1388.
Elementary Differences between the (2p)-C. E. and the (2p + 1)-C. E. Enumeration Degrees.I. Sh Kalimullin - 2007 - Journal of Symbolic Logic 72 (1):277 - 284.
Randomness, Lowness and Degrees.George Barmpalias, Andrew E. M. Lewis & Mariya Soskova - 2008 - Journal of Symbolic Logic 73 (2):559 - 577.
Degrees of categoricity of computable structures.Ekaterina B. Fokina, Iskander Kalimullin & Russell Miller - 2010 - Archive for Mathematical Logic 49 (1):51-67.
Properly [image] Enumeration Degrees and the High/Low Hierarchy.Matthew Giorgi, Andrea Sorbi & Yue Yang - 2006 - Journal of Symbolic Logic 71 (4):1125 - 1144.
Branching in the $${\Sigma^0_2}$$ -enumeration degrees: a new perspective. [REVIEW]Maria L. Affatato, Thomas F. Kent & Andrea Sorbi - 2008 - Archive for Mathematical Logic 47 (3):221-231.
A jump operator on honest subrecursive degrees.Lars Kristiansen - 1998 - Archive for Mathematical Logic 37 (2):105-125.
Analytics
Added to PP
2013-11-23
Downloads
39 (#301,328)
6 months
1 (#449,844)
2013-11-23
Downloads
39 (#301,328)
6 months
1 (#449,844)
Historical graph of downloads
Citations of this work
Splitting properties of {$n$}-c.e. enumeration degrees.I. Sh Kalimullin - 2002 - Journal of Symbolic Logic 67 (2):537-546.
Interpreting true arithmetic in the Δ 0 2 -enumeration degrees.Thomas F. Kent - 2010 - Journal of Symbolic Logic 75 (2):522-550.