A Simple Proof of Completeness and Cut-elimination for Propositional G¨ odel Logic

We provide a constructive, direct, and simple proof of the completeness of the cut-free part of the hypersequential calculus for G¨odel logic (thereby proving both completeness of the calculus for its standard semantics, and the admissibility of the cut rule in the full calculus). We then extend the results and proofs to derivations from assumptions, showing that such derivations can be confined to those in which cuts are made only on formulas which occur in the assumptions
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,479
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

8 ( #468,133 of 1,925,795 )

Recent downloads (6 months)

2 ( #308,704 of 1,925,795 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.