Abstract
A logic \ is called self-extensional if it allows to replace occurrences of a formula by occurrences of an \-equivalent one in the context of claims about logical consequence and logical validity. It is known that no three-valued paraconsistent logic which has an implication can be self-extensional. In this paper we show that in contrast, there is exactly one self-extensional three-valued paraconsistent logic in the language of \ for which \ is a disjunction, and \ is a conjunction. We also investigate the main properties of this logic, determine the expressive power of its language, and provide a cut-free Gentzen-type proof system for it.