Tonk- A Full Mathematical Solution

There is a long tradition (See e.g. [9, 10]) starting from [12], according to which the meaning of a connective is determined by the introduction and elimination rules which are associated with it. The supporters of this thesis usually have in mind natural deduction systems of a certain ideal type (explained in Section 3 below). Unfortunately, already the handling of classical negation requires rules which are not of that type. This problem can be solved in the framework of multiple-conclusion Gentzen-type systems (also first introduced in [12]), where instead of introduction and elimination rules there are left introduction rules and right introduction rules.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,470
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

25 ( #191,006 of 1,925,574 )

Recent downloads (6 months)

1 ( #418,223 of 1,925,574 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.