Propositions as [Types]

Abstract
Image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. This unary type constructor [A] has turned up previously in a syntactic form as a way of erasing computational content, and formalizing a notion of proof irrelevance. Indeed, semantically, the notion of a support is sometimes used as surrogate proposition asserting inhabitation of an indexed family. We give rules for bracket types in dependent type theory and provide complete semantics using regular categories. We show that dependent type theory with the unit type, strong extensional equality types, strong dependent sums, and bracket types is the internal type theory of regular categories, in the same way that the usual dependent type theory with dependent sums and products is the internal type theory of locally Cartesian closed categories. We also show how to interpret first-order logic in type theory with brackets, and we make use of the translation to compare type theory with logic. Specifically, we show that the propositions-as-types interpretation is complete with respect to a certain fragment of intuitionistic first-order logic, in the sense that a formula from the fragment is derivable in intuitionistic first-order logic if, and only if, its interpretation in dependent type theory is inhabited. As a consequence, a modified double-negation translation into type theory (without bracket types) is complete, in the same sense, for all of classical first-order logic
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,749
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Syntactic Calculus with Dependent Types.Aarne Ranta - 1998 - Journal of Logic, Language and Information 7 (4):413-431.
An Intensional Type Theory: Motivation and Cut-Elimination.Paul C. Gilmore - 2001 - Journal of Symbolic Logic 66 (1):383-400.
The Inconsistency of Higher Order Extensions of Martin-Löf's Type Theory.Bart Jacobs - 1989 - Journal of Philosophical Logic 18 (4):399 - 422.
Added to PP index
2010-09-14

Total downloads
14 ( #344,562 of 2,197,364 )

Recent downloads (6 months)
1 ( #298,877 of 2,197,364 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature