Archive for Mathematical Logic 55 (1-2):19-35 (2016)

Authors
Abstract
Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q} \in V_\theta}$$\end{document}, the cardinal κ will exhibit none of the large cardinal properties with target θ or larger.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/s00153-015-0458-3
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 71,464
Through your library

References found in this work BETA

Set-Theoretic Geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
The Lottery Preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
Gap Forcing: Generalizing the Lévy-Solovay Theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
Resurrection Axioms and Uplifting Cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.

View all 17 references / Add more references

Citations of this work BETA

The Downward Directed Grounds Hypothesis and Very Large Cardinals.Toshimichi Usuba - 2017 - Journal of Mathematical Logic 17 (2):1750009.
Resurrection Axioms and Uplifting Cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.
Elementary Chains and C (N)-Cardinals.Konstantinos Tsaprounis - 2014 - Archive for Mathematical Logic 53 (1-2):89-118.
Choice Principles in Local Mantles.Farmer Schlutzenberg - 2022 - Mathematical Logic Quarterly 68 (3):264-278.

View all 6 citations / Add more citations

Similar books and articles

The Lottery Preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
Elementary Chains and C (N)-Cardinals.Konstantinos Tsaprounis - 2014 - Archive for Mathematical Logic 53 (1-2):89-118.
On Extendible Cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.
Laver Sequences for Extendible and Super-Almost-Huge Cardinals.Paul Corazza - 1999 - Journal of Symbolic Logic 64 (3):963-983.
Strong Cardinals Can Be Fully Laver Indestructible.Arthur W. Apter - 2002 - Mathematical Logic Quarterly 48 (4):499-507.
Unfoldable Cardinals and the GCH.Joel David Hamkins - 2001 - Journal of Symbolic Logic 66 (3):1186-1198.
Strongly Unfoldable Cardinals Made Indestructible.Thomas A. Johnstone - 2008 - Journal of Symbolic Logic 73 (4):1215-1248.
C (N)-Cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
The Wholeness Axiom and Laver Sequences.Paul Corazza - 2000 - Annals of Pure and Applied Logic 105 (1-3):157-260.
Tall Cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.
A Cardinal Pattern Inspired by AD.Arthur W. Apter - 1996 - Mathematical Logic Quarterly 42 (1):211-218.
On the Indestructibility Aspects of Identity Crisis.Grigor Sargsyan - 2009 - Archive for Mathematical Logic 48 (6):493-513.
Gap Forcing: Generalizing the Lévy-Solovay Theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.

Analytics

Added to PP index
2015-12-24

Total views
14 ( #735,445 of 2,520,750 )

Recent downloads (6 months)
1 ( #405,718 of 2,520,750 )

How can I increase my downloads?

Downloads

My notes