Abstract
$\underline{\text{Saturation is} (\mu, \kappa)-\text{transferable in} T}$ if and only if there is an expansion T 1 of T with ∣ T 1 ∣ = ∣ T ∣ such that if M is a μ-saturated model of T 1 and ∣ M ∣ ≥ κ then the reduct M ∣ L(T) is κ-saturated. We characterize theories which are superstable without f.c.p., or without f.c.p. as, respectively those where saturation is (ℵ 0 , λ)- transferable or (κ (T), λ)-transferable for all λ. Further if for some $\mu \geq \mid T \mid, 2^\mu > \mu^+$ , stability is equivalent to for all μ ≥ ∣ T ∣, saturation is (μ, 2 μ )- transferable