On the existence of a strong minimal pair

Journal of Mathematical Logic 15 (1):1550003 (2015)
  Copy   BIBTEX

Abstract

We show that there is a strong minimal pair in the computably enumerable Turing degrees, i.e. a pair of nonzero c.e. degrees a and b such that a∩b = 0 and for any nonzero c.e. degree x ≤ a, b ∪ x ≥ a.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,122

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A minimal pair joining to a plus cupping Turing degree.Dengfeng Li & Angsheng Li - 2003 - Mathematical Logic Quarterly 49 (6):553-566.
Highness and bounding minimal pairs.Rodney G. Downey, Steffen Lempp & Richard A. Shore - 1993 - Mathematical Logic Quarterly 39 (1):475-491.
Strong polynomial-time reducibility.Juichi Shinoda - 1997 - Annals of Pure and Applied Logic 84 (1):97-117.
The ontological status of minimal entities.Luca Moretti - 2008 - Philosophical Studies 141 (1):97 - 114.
Strong Minimal Covers for Recursively Enumerable Degrees.S. Barry Cooper - 1996 - Mathematical Logic Quarterly 42 (1):191-196.
Thomas Wylton Against Minimal Times.Cecilia Trifogli - 2003 - Early Science and Medicine 8 (4):404-417.
A Hyperimmune Minimal Degree and an ANR 2-Minimal Degree.Mingzhong Cai - 2010 - Notre Dame Journal of Formal Logic 51 (4):443-455.
Π10 classes and minimal degrees.Marcia J. Groszek & Theodore A. Slaman - 1997 - Annals of Pure and Applied Logic 87 (2):117-144.
Weakly o-Minimal Expansions of Boolean Algebras.Carlo Toffalori & S. Leonesi - 2001 - Mathematical Logic Quarterly 47 (2):223-238.
Infima in the d.r.e. degrees.D. Kaddah - 1993 - Annals of Pure and Applied Logic 62 (3):207-263.

Analytics

Added to PP
2015-05-15

Downloads
63 (#239,739)

6 months
15 (#126,617)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

B. R. George
University of California, Los Angeles (PhD)

Citations of this work

Mass problems and density.Stephen Binns, Richard A. Shore & Stephen G. Simpson - 2016 - Journal of Mathematical Logic 16 (2):1650006.

Add more citations

References found in this work

A minimal pair of recursively enumerable degrees.C. E. M. Yates - 1966 - Journal of Symbolic Logic 31 (2):159-168.
Non-bounding constructions.J. R. Shoenfield - 1990 - Annals of Pure and Applied Logic 50 (2):191-205.

View all 6 references / Add more references