Annals of Pure and Applied Logic 141 (1-2):51-60 (2006)

Authors
Andrew Lewis
Graduate Theological Union
Abstract
We show that the identity bounded Turing degrees of computably enumerable sets are not dense
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1016/j.apal.2005.10.001
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 64,291
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

A C.E. Real That Cannot Be SW-Computed by Any Ω Number.George Barmpalias & Andrew E. M. Lewis - 2006 - Notre Dame Journal of Formal Logic 47 (2):197-209.
Computability Theory and Differential Geometry.Robert I. Soare - 2004 - Bulletin of Symbolic Logic 10 (4):457-486.
There Is No SW-Complete C.E. Real.Liang Yu & Decheng Ding - 2004 - Journal of Symbolic Logic 69 (4):1163 - 1170.
Strong Reducibility on Hypersimple Sets.T. G. McLaughlin - 1965 - Notre Dame Journal of Formal Logic 6 (3):229-234.

View all 6 references / Add more references

Citations of this work BETA

The Computable Lipschitz Degrees of Computably Enumerable Sets Are Not Dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
Randomness and the Linear Degrees of Computability.Andrew Em Lewis & George Barmpalias - 2007 - Annals of Pure and Applied Logic 145 (3):252-257.
Computability Results Used in Differential Geometry.Barbara F. Csima & Robert I. Soare - 2006 - Journal of Symbolic Logic 71 (4):1394 - 1410.

View all 10 citations / Add more citations

Similar books and articles

An Interval of Computably Enumerable Isolating Degrees.Matthew C. Salts - 1999 - Mathematical Logic Quarterly 45 (1):59-72.
The Computable Lipschitz Degrees of Computably Enumerable Sets Are Not Dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
Differences of Computably Enumerable Sets.A. Nies & S. Lempp - 2000 - Mathematical Logic Quarterly 46 (4):555-562.
Bounding Cappable Degrees.Angsheng Li - 2000 - Archive for Mathematical Logic 39 (5):311-352.
The Computably Enumerable Degrees Are Locally Non-Cappable.Matthew B. Giorgi - 2004 - Archive for Mathematical Logic 43 (1):121-139.
Bounding Minimal Degrees by Computably Enumerable Degrees.Angsheng Li & Dongping Yang - 1998 - Journal of Symbolic Logic 63 (4):1319-1347.
A Superhigh Diamond in the C.E. Tt-Degrees.Douglas Cenzer, Johanna Ny Franklin, Jiang Liu & Guohua Wu - 2011 - Archive for Mathematical Logic 50 (1-2):33-44.
On a Problem of Cooper and Epstein.Shamil Ishmukhametov - 2003 - Journal of Symbolic Logic 68 (1):52-64.
Degrees of Monotone Complexity.William C. Calhoun - 2006 - Journal of Symbolic Logic 71 (4):1327 - 1341.
The Isolated D. R. E. Degrees Are Dense in the R. E. Degrees.Geoffrey Laforte - 1996 - Mathematical Logic Quarterly 42 (1):83-103.

Analytics

Added to PP index
2014-01-16

Total views
4 ( #1,252,291 of 2,456,062 )

Recent downloads (6 months)
1 ( #449,366 of 2,456,062 )

How can I increase my downloads?

Downloads

My notes