In Sujata Ghosh & Thomas Icard (eds.), Logic, Rationality, and Interaction: 8th International Workshop, Lori 2021, Xi’an, China, October 16–18, 2021, Proceedings. Springer Verlag. pp. 1-13 (2021)
Authors |
|
Abstract |
Computability theorists have introduced multiple hierarchies to measure the complexity of sets of natural numbers. The Kleene Hierarchy classifies sets according to the first-order complexity of their defining formulas. The Ershov Hierarchy classifies Δ20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta ^0_2$$\end{document} sets with respect to the number of mistakes that are needed to approximate them. Biacino and Gerla extended the Kleene Hierarchy to the realm of fuzzy sets, whose membership functions range in a complete lattice L. In this paper, we combine the Ershov Hierarchy and fuzzy set theory, by introducing and investigating the Fuzzy Ershov Hierarchy. In particular, we focus on the fuzzy n-c.e. sets which form the finite levels of this hierarchy. Intuitively, a fuzzy set is n-c.e. if its membership function can be approximated by changing monotonicity at most n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} times. We prove that the Fuzzy Ershov Hierarchy does not collapse; that, in analogy with the classical case, each fuzzy n-c.e. set can be represented as a Boolean combination of fuzzy c.e. sets; but that, contrary to the classical case, the Fuzzy Ershov Hierarchy does not exhaust the class of all Δ20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta ^0_2$$\end{document} fuzzy sets.
|
Keywords | No keywords specified (fix it) |
Categories |
No categories specified (categorize this paper) |
Buy the book |
Find it on Amazon.com
|
DOI | 10.1007/978-3-030-88708-7_1 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
No citations found.
Similar books and articles
The Hausdorff-Ershov Hierarchy in Euclidean Spaces.Armin Hemmerling - 2006 - Archive for Mathematical Logic 45 (3):323-350.
The Discrete Parts of Approximately Decidable Sets in Euclidean Spaces.Armin Hemmerling - 2003 - Mathematical Logic Quarterly 49 (4):428.
New Trends and Open Problems in Fuzzy Logic and Approximate Reasoning.Didier Dubois & Henri Prade - 1996 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 11 (3):109-121.
Recursive Structures and Ershov's Hierarchy.Christopher J. Ash & Julia F. Knight - 1996 - Mathematical Logic Quarterly 42 (1):461-468.
Classifying equivalence relations in the Ershov hierarchy.Nikolay Bazhenov, Manat Mustafa, Luca San Mauro, Andrea Sorbi & Mars Yamaleev - 2020 - Archive for Mathematical Logic 59 (7-8):835-864.
Characterizations of the Class ~2^T^a Over Euclidean Spaces.Armin Hemmerling - 2004 - Mathematical Logic Quarterly 50 (4):507.
Fuzzy Sets, Logics and Reasoning About Knowledge.Didier Dubois, Henri Prade & Erich Peter Klement (eds.) - 1999 - Dordrecht, Netherland: Springer.
On Genericity and Ershov's Hierarchy.Amy Gale & Rod Downey - 2001 - Mathematical Logic Quarterly 47 (2):161-182.
Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches.Siegfried Gottwald - 2006 - Studia Logica 82 (2):211-244.
The Resolution of Two Paradoxes by Approximate Reasoning Using a Fuzzy Logic.J. F. Baldwin & N. C. F. Guild - 1980 - Synthese 44 (3):397 - 420.
Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part II: Category Theoretic Approaches.Siegfried Gottwald - 2006 - Studia Logica 84 (1):23-50.
Fuzzy in 3–D: Two Contrasting Paradigms.Sarah Greenfield & Francisco Chiclana - 2015 - Archives for the Philosophy and History of Soft Computing 2015 (2).
Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications.Hans Bandemer & Siegfried Gottwald - 1995 - John Wiley & Son.
Approximate Decidability in Euclidean Spaces.Armin Hemmerling - 2003 - Mathematical Logic Quarterly 49 (1):34-56.
Approximate Similarities and Poincaré Paradox.Giangiacomo Gerla - 2008 - Notre Dame Journal of Formal Logic 49 (2):203-226.
Analytics
Added to PP index
2022-03-10
Total views
1 ( #1,546,110 of 2,507,555 )
Recent downloads (6 months)
1 ( #416,983 of 2,507,555 )
2022-03-10
Total views
1 ( #1,546,110 of 2,507,555 )
Recent downloads (6 months)
1 ( #416,983 of 2,507,555 )
How can I increase my downloads?
Downloads
Sorry, there are not enough data points to plot this chart.
Sorry, there are not enough data points to plot this chart.