Optimal Formulation of Complex Chemical Systems with a Genetic Algorithm

We demonstrate a method for optimizing desired functionality in real complex chemical systems, using a genetic algorithm. The chemical systems studied here are mixtures of amphiphiles, which spontaneously exhibit a complex variety of self-assembled molecular aggregations, and the property optimized is turbidity. We also experimentally resolve the fitness landscape in some hyper-planes through the space of possible amphiphile formulations, in order to assess the practicality of our optimization method. Our method shows clear and significant progress after testing only 1 % of the possible amphiphile formulations.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,422
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

22 ( #213,904 of 1,924,897 )

Recent downloads (6 months)

2 ( #308,473 of 1,924,897 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.