Basic model theory

A structure is a triple A = (A, {Ri: i ∈ I}, {ej: j ∈ J}), where A, the domain or universe of A, is a nonempty set, {Ri: i ∈ I} is an indexed family of relations on A and {ej: j ∈ J}) is an indexed set of elements —the designated elements of A. For each i ∈ I there is then a natural number λ(i) —the degree of Ri —such that Ri is a λ(i)-place relation on A, i.e., Ri ⊆ Aλ(i). This λ may be regarded as a function from I to the set ω of natural numbers; the pair (λ, J) is called the type of A. Structures of the same type are said to be similar. Note that since an n-place operation f: An → A can be regarded as an (n+1)-place relation on A, algebraic structures containing operations such as groups, rings, vector spaces, etc. may be construed as structures in the above sense.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,411
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

33 ( #145,596 of 1,924,713 )

Recent downloads (6 months)

1 ( #417,761 of 1,924,713 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.