Synthese 75 (3):285 - 315 (1988)
The infinitesimal methods commonly used in the 17th and 18th centuries to solve analytical problems had a great deal of elegance and intuitive appeal. But the notion of infinitesimal itself was flawed by contradictions. These arose as a result of attempting to representchange in terms ofstatic conceptions. Now, one may regard infinitesimals as the residual traces of change after the process of change has been terminated. The difficulty was that these residual traces could not logically coexist with the static quantities traditionally employed by mathematics. The solution to this difficulty, as it turns out, is to regard these quantities asalso being subject to (a form of) change, for then they will have the same nature as the infinitesimals representing the residual traces of change, and will become,ipso facto, compatible with these latter.In fact, the category-theoretic models which realize the Principle of Infinitesimal Linearity may themselves be regarded as representations of a general concept of variation (cf. Bell (1986)). While the static set-theoretical models represent change or motion by making a detour through the actual (but static) infinite, the varying category-theoretic models enable such change to be representeddirectly, thus permitting the introduction of geometric infinitesimals and, as we have attempted to demonstrate in this paper, the virtually complete incorporation of the methods of the early calculus.It is surely a remarkable — even an ironic — fact that the contradiction between the flux of the objective world and the stasis of mathematical entities has found its resolution in category theory, a branch of mathematics commonly, and, as one now sees, mistakenly, regarded as the summit of gratuitous abstraction
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.1007/BF00869403
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,674
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Anders Kock (2007). Synthetic Differential Geometry. Bulletin of Symbolic Logic 13 (2):244-245.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

51 ( #94,495 of 1,903,117 )

Recent downloads (6 months)

16 ( #44,357 of 1,903,117 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.