Abstract
We reconsider the pragmatic interpretation of intuitionistic logic [21]
regarded as a logic of assertions and their justi cations and its relations with classical
logic. We recall an extension of this approach to a logic dealing with assertions
and obligations, related by a notion of causal implication [14, 45]. We focus on
the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on
polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the
S4 modal translation, we give a de nition of a system AHL of bi-intuitionistic logic
that correctly represents the duality between intuitionistic and co-intuitionistic logic,
correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism
as a distributed calculus of coroutines is then used to give an operational
interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear
calculus of co-intuitionistic coroutines is de ned and a probabilistic interpretation
of linear co-intuitionism is given as in [9]. Also we remark that by extending the
language of intuitionistic logic we can express the notion of expectation, an assertion
that in all situations the truth of p is possible and that in a logic of expectations
the law of double negation holds. Similarly, extending co-intuitionistic logic, we can
express the notion of conjecture that p, de ned as a hypothesis that in some situation
the truth of p is epistemically necessary.