Observations on category theory

Axiomathes 12 (1-2):151-155 (2001)
is a presentation of mathematics in terms of the fundamental concepts of transformation, and composition of transformations. While the importance of these concepts had long been recognized in algebra (for example, by Galois through the idea of a group of permutations) and in geometry (for example, by Klein in his Erlanger Programm), the truly universal role they play in mathematics did not really begin to be appreciated until the rise of abstract algebra in the 1930s. In abstract algebra the idea of transformation of structure (homomorphism) was central from the beginning, and it soon became apparent to algebraists that its most important concepts and constructions were in fact formulable in terms of that idea alone. Thus emerged the view that the essence of a mathematical structure is to be sought not in its internal constitution, but rather in the nature of its relationships with other structures of the same kind, as manifested through the network of transformations. This idea has achieved its fullest expression in category theory, an axiomatic framework within which the notions of transformation (as morphism or arrow) and composition (and also structure, as object) are fundamental, that is, are not defined in terms of anything else.
Keywords Philosophy   Philosophy   Logic   Ontology   Linguistics   Cognitive Psychology
Categories (categorize this paper)
DOI 10.1023/A:1012766204615
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,411
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

102 ( #45,509 of 1,924,735 )

Recent downloads (6 months)

5 ( #187,091 of 1,924,735 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.