Non-Archimedean Probability

Milan Journal of Mathematics 81 (1):121-151 (2013)
  Copy   BIBTEX

Abstract

We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned probability zero (in other words: the probability functions are regular). We use a non-Archimedean field as the range of the probability function. As a result, the property of countable additivity in Kolmogorov’s axiomatization of probability is replaced by a different type of infinite additivity.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 96,554

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Triangulating non-archimedean probability.Hazel Brickhill & Leon Horsten - 2018 - Review of Symbolic Logic 11 (3):519-546.
Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
Herkansing voor infinitesimalen?Sylvia Wenmackers - 2018 - Algemeen Nederlands Tijdschrift voor Wijsbegeerte 110 (4):491-510.
Non-Archimedean fuzzy and probability logic.Andrew Schumann - 2008 - Journal of Applied Non-Classical Logics 18 (1):29-48.
Fair infinite lotteries.Sylvia Wenmackers & Leon Horsten - 2013 - Synthese 190 (1):37-61.

Analytics

Added to PP
2011-08-30

Downloads
218 (#103,739)

6 months
34 (#122,686)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Leon Horsten
Universität Konstanz

Citations of this work

Surreal Decisions.Eddy Keming Chen & Daniel Rubio - 2020 - Philosophy and Phenomenological Research 100 (1):54-74.
Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.

View all 39 citations / Add more citations

References found in this work

[Omnibus Review].H. Jerome Keisler - 1970 - Journal of Symbolic Logic 35 (2):342-344.

Add more references