Sahlqvist Correspondence for Modal mu-calculus

Studia Logica 100 (1-2):31-60 (2012)
Abstract
We define analogues of modal Sahlqvist formulas for the modal mu-calculus, and prove a correspondence theorem for them
Keywords fixed-point logic  modal correspondence theory  PIA formula  minimal valuation
Categories (categorize this paper)
DOI 10.1007/s11225-012-9388-9
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,824
Through your library
References found in this work BETA
Minimal Predicates, Fixed-Points, and Definability.Johan van Benthem - 2005 - Journal of Symbolic Logic 70 (3):696-712.
The McKinsey–Lemmon Logic is Barely Canonical.Robert Goldblatt & Ian Hodkinson - 2007 - Australasian Journal of Philosophy 5:1-19.

Add more references

Citations of this work BETA
The Bounded Proof Property Via Step Algebras and Step Frames.Nick Bezhanishvili & Silvio Ghilardi - 2014 - Annals of Pure and Applied Logic 165 (12):1832-1863.

Add more citations

Similar books and articles
Modal Correspondence for Models.Jon Barwise & Lawrence S. Moss - 1998 - Journal of Philosophical Logic 27 (3):275-294.
The Modal Object Calculus and its Interpretation.Edward N. Zalta - 1997 - In M. de Rijke (ed.), Advances in Intensional Logic. Kluwer Academic Publishers. pp. 249--279.
Categorial Inference and Modal Logic.Natasha Kurtonina - 1998 - Journal of Logic, Language and Information 7 (4):399-411.
The Situation Calculus: A Case for Modal Logic. [REVIEW]Gerhard Lakemeyer - 2010 - Journal of Logic, Language and Information 19 (4):431-450.
Haecceitism for Modal Realists.Sam Cowling - 2012 - Erkenntnis 77 (3):399-417.
On the Canonicity of Sahlqvist Identities.Bjarni Jónsson - 1994 - Studia Logica 53 (4):473 - 491.
A Modal View of Linear Logic.Simone Martini & Andrea Masini - 1994 - Journal of Symbolic Logic 59 (3):888-899.

Monthly downloads

Added to index

2012-02-08

Total downloads

11 ( #407,134 of 2,178,176 )

Recent downloads (6 months)

1 ( #316,504 of 2,178,176 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Order:
There  are no threads in this forum
Nothing in this forum yet.

Other forums