Asymptotic analysis of skolem’s exponential functions
Journal of Symbolic Logic 87 (2):758-782 (2022)
Abstract
Skolem studied the germs at infinity of the smallest class of real valued functions on the positive real line containing the constant $1$, the identity function ${\mathbf {x}}$, and such that whenever f and g are in the set, $f+g,fg$ and $f^g$ are in the set. This set of germs is well ordered and Skolem conjectured that its order type is epsilon-zero. Van den Dries and Levitz computed the order type of the fragment below $2^{2^{\mathbf {x}}}$. Here we prove that the set of asymptotic classes within any Archimedean class of Skolem functions has order type $\omega $. As a consequence we obtain, for each positive integer n, an upper bound for the fragment below $2^{n^{\mathbf {x}}}$. We deduce an epsilon-zero upper bound for the fragment below $2^{{\mathbf {x}}^{\mathbf {x}}}$, improving the previous epsilon-omega bound by Levitz. A novel feature of our approach is the use of Conway’s surreal number for asymptotic calculations.DOI
10.1017/jsl.2020.26
My notes
Similar books and articles
Asymptotic analysis of skolem’s exponential functions.Alessandro Berarducci & Marcello Mamino - 2020 - Journal of Symbolic Logic:1-25.
Skolem Functions in Non-Classical Logics.Tore Fjetland Øgaard - 2017 - Australasian Journal of Logic 14 (1):181-225.
Uniformization and Skolem Functions in the Class of Trees.Shmuel Lifsches & Saharon Shelah - 1998 - Journal of Symbolic Logic 63 (1):103-127.
Exponential-constructible functions in P-minimal structures.Saskia Chambille, Pablo Cubides Kovacsics & Eva Leenknegt - 2019 - Journal of Mathematical Logic 20 (2):2050005.
Adding Skolem functions to simple theories.Herwig Nübling - 2004 - Archive for Mathematical Logic 43 (3):359-370.
Skolem TH.. Remarks on recursive functions and relations. Det Kongelige Norske Videnskabers Selskab, Forhandlinger, vol. 17 , pp. 89–92.Skolem TH.. Some remarks on recursive arithmetic. Det Kongelige Norske Videnskabers Selskab, Forhandlinger, vol. 17 , pp. 103–106.Skolem TH.. A note on recursive arithmetic. Det Kongelige Norske Videnskabers Selskab, Forhandlinger, vol. 17 , pp. 107–109.Skolem TH.. Some remarks on the comparison between recursive functions. Det Kongelige Norske Videnskabers Selskab, Forhandlinger, vol. 17 , pp. 126–129. [REVIEW]Paul Bernays - 1946 - Journal of Symbolic Logic 11 (1):26-28.
Minimal realizability of intuitionistic arithmetic and elementary analysis.Zlatan Damnjanovic - 1995 - Journal of Symbolic Logic 60 (4):1208-1241.
Reflections on Skolem's relativity of set-theoretical concepts.Ignagio Jane - 2001 - Philosophia Mathematica 9 (2):129-153.
Efficient elimination of Skolem functions in $$\text {LK}^\text {h}$$ LK h.Ján Komara - 2022 - Archive for Mathematical Logic 61 (3):503-534.
The Mathematics of Skolem's Paradox.Timothy Bays - 2006 - In Dale Jacquette (ed.), Philosophy of Logic. North Holland. pp. 615--648.
In the shadows of the löwenheim-Skolem theorem: Early combinatorial analyses of mathematical proofs.Jan von Plato - 2007 - Bulletin of Symbolic Logic 13 (2):189-225.
Analytics
Added to PP
2022-06-15
Downloads
6 (#1,104,966)
6 months
6 (#133,276)
2022-06-15
Downloads
6 (#1,104,966)
6 months
6 (#133,276)
Historical graph of downloads
References found in this work
Intermediate arithmetic operations on ordinal numbers.Harry J. Altman - 2017 - Mathematical Logic Quarterly 63 (3-4):228-242.
Logarithmic-exponential series.Lou van den Dries, Angus Macintyre & David Marker - 2001 - Annals of Pure and Applied Logic 111 (1-2):61-113.
Solution of the identity problem for integral exponential functions.D. Richardson - 1969 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (20-22):333-340.
Associative Ordinal Functions, Well Partial Orderings and a Problem of Skolem.Diana Schmidt - 1978 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 24 (19-24):297-302.