Intersection theory for o-minimal manifolds
Annals of Pure and Applied Logic 107 (1-3):87-119 (2001)
Abstract
We develop an intersection theory for definable Cp-manifolds in an o-minimal expansion of a real closed field and we prove the invariance of the intersection numbers under definable Cp-homotopies . In particular we define the intersection number of two definable submanifolds of complementary dimensions, the Brouwer degree and the winding numbers. We illustrate the theory by deriving in the o-minimal context the Brouwer fixed point theorem, the Jordan-Brouwer separation theorem and the invariance of the Lefschetz numbers under definable Cp-homotopies. A. Pillay has shown that any definable group admits an abstract manifold structure. We apply the intersection theory to definable groups after proving an embedding theorem for abstract definably compact Cp-manifolds. In particular using the Lefschetz fixed point theorem we show that the Lefschetz number of the identity map on a definably compact group, which in the classical case coincides with the Euler characteristic, is zeroAuthor's Profile
DOI
10.1016/s0168-0072(00)00027-0
My notes
Similar books and articles
Corrigendum to: "Transfer Methods for O-Minimal Topology".Alessandro Berarducci, Mário Edmundo & Margarita Otero - 2007 - Journal of Symbolic Logic 72 (3):1079 - 1080.
Transfer methods for o-minimal topology.Alessandro Berarducci & Margarita Otero - 2003 - Journal of Symbolic Logic 68 (3):785-794.
A descending chain condition for groups definable in o -minimal structures.Alessandro Berarducci, Margarita Otero, Yaa’cov Peterzil & Anand Pillay - 2005 - Annals of Pure and Applied Logic 134 (2):303-313.
Tackling three of Frege's problems: Edmund Husserl on sets and manifolds. [REVIEW]Claire Ortiz Hill - 2002 - Axiomathes 13 (1):79-104.
Quasi-o-minimal structures.Oleg Belegradek, Ya'acov Peterzil & Frank Wagner - 2000 - Journal of Symbolic Logic 65 (3):1115-1132.
The Semantics of Entailment Omega.Yoko Motohama, Robert K. Meyer & Mariangiola Dezani-Ciancaglini - 2002 - Notre Dame Journal of Formal Logic 43 (3):129-145.
Mind, Language and Subjectivity: Minimal Content and the Theory of Thought.Nicholas Georgalis - 2015 - Routledge.
Topics in the Foundations of General Relativity and Newtonian Gravitation Theory.David B. Malament - 2012 - Chicago: Chicago University Press.
Minimally generated abstract logics.Steffen Lewitzka & Andreas B. M. Brunner - 2009 - Logica Universalis 3 (2):219-241.
A Hyperimmune Minimal Degree and an ANR 2-Minimal Degree.Mingzhong Cai - 2010 - Notre Dame Journal of Formal Logic 51 (4):443-455.
The model of set theory generated by countably many generic reals.Andreas Blass - 1981 - Journal of Symbolic Logic 46 (4):732-752.
A monotonicity theorem for dp-minimal densely ordered groups.John Goodrick - 2010 - Journal of Symbolic Logic 75 (1):221-238.
Analytics
Added to PP
2014-01-16
Downloads
17 (#641,389)
6 months
1 (#450,993)
2014-01-16
Downloads
17 (#641,389)
6 months
1 (#450,993)
Historical graph of downloads
Author's Profile
Citations of this work
Groups Definable in Ordered Vector Spaces over Ordered Division Rings.Pantelis E. Eleftheriou & Sergei Starchenko - 2007 - Journal of Symbolic Logic 72 (4):1108 - 1140.
A descending chain condition for groups definable in o -minimal structures.Alessandro Berarducci, Margarita Otero, Yaa’cov Peterzil & Anand Pillay - 2005 - Annals of Pure and Applied Logic 134 (2):303-313.
Transfer methods for o-minimal topology.Alessandro Berarducci & Margarita Otero - 2003 - Journal of Symbolic Logic 68 (3):785-794.
O-Minimal Spectra, Infinitesimal Subgroups and Cohomology.Alessandro Berarducci - 2007 - Journal of Symbolic Logic 72 (4):1177 - 1193.
Compact domination for groups definable in linear o-minimal structures.Pantelis E. Eleftheriou - 2009 - Archive for Mathematical Logic 48 (7):607-623.
References found in this work
One-dimensional groups over an o-minimal structure.Vladimir Razenj - 1991 - Annals of Pure and Applied Logic 53 (3):269-277.
Groups of dimension two and three over o-minimal structures.A. Nesin, A. Pillay & V. Razenj - 1991 - Annals of Pure and Applied Logic 53 (3):279-296.