Do quantum-mechanical systems always possess definite properties dictated by their states?


Authors
Tomasz Bigaj
University of Warsaw
Abstract
In the article the possibility of breaking the eigenvalue-eigenstate link in quantum mechanics is considered. An argument is presented to the effect that there are some non-maximal observables for which the implication from eigenstates to eigenvalues is not valid, i.e. such that although the probability of revealing certain value upon measurement is one, they don't possess this value before the measurement. It is shown that the existence of such observables leads to contextuality, i.e. the thesis that one Hermitean operator can represent more than one physical observable. Finally, contextuality brought about by these considerations is compared with contextuality suggested by the Kochen-Specker paradox.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 53,586
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
117 ( #79,492 of 2,348,619 )

Recent downloads (6 months)
1 ( #512,295 of 2,348,619 )

How can I increase my downloads?

Downloads

My notes