Journal of Philosophical Logic 30 (2):97-119 (2001)

Tomasz Bigaj
University of Warsaw
The paper consists of two parts. The first part begins with the problem of whether the original three-valued calculus, invented by J. Łukasiewicz, really conforms to his philosophical and semantic intuitions. I claim that one of the basic semantic assumptions underlying Łukasiewicz's three-valued logic should be that if under any possible circumstances a sentence of the form "X will be the case at time t" is true (resp. false) at time t, then this sentence must be already true (resp. false) at present. However, it is easy to see that this principle is violated in Lukasiewicz's original calculus (as the cases of the law of excluded middle and the law of contradiction show). Nevertheless it is possible to construct (either with the help of the notion of "supervaluation", or purely algebraically) a different three-valued, semi-classical sentential calculus, which would properly incorporate Łukasiewicz's initial intuitions. Algebraically, this calculus has the ordinary Boolean structure, and therefore it retains all classically valid formulas. Yet because possible valuations are no longer represented by ultrafilters, but by filters (not necessarily maximal), the new calculus displays certain non-classical metalogical features (like, for example, nonextensionality and the lack of the metalogical rule enabling one to derive "p is true or q is true" from" 'p ∨ q' is true"). The second part analyses whether the proposed calculus could be useful in formalizing inferences in situations, when for some reason (epistemological or ontological) our knowledge of certain facts is subject to limitation. Special attention should be paid to the possibility of employing this calculus to the case of quantum mechanics. I am going to compare it with standard non-Boolean quantum logic (in the Jauch-Piron approach), and to show that certain shortcomings of the latter can be avoided in the former. For example, I will argue that in order to properly account for quantum features of microphysics, we do not need to drop the law of distributivity. Also the idea of "reading off" the logical structure of propositions from the structure of Hilbert space leads to some conceptual troubles, which I am going to point out. The thesis of the paper is that all we need to speak about quantum reality can be acquired by dropping the principle of bivalence and extensionality, while accepting all classically valid formulas
Keywords Philosophy
Categories (categorize this paper)
Reprint years 2004
DOI 10.1023/A:1017571731461
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 51,756
Through your library

References found in this work BETA

Past, Present and Future.Arthur Prior - 1967 - Clarendon Press.
Interpreting the Quantum World.Jeffrey Bub - 1998 - British Journal for the Philosophy of Science 49 (4):637-641.
Singular Terms, Truth-Value Gaps, and Free Logic.Bas C. van Fraassen - 1966 - Journal of Philosophy 63 (17):481-495.

View all 7 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
76 ( #122,006 of 2,334,030 )

Recent downloads (6 months)
1 ( #584,690 of 2,334,030 )

How can I increase my downloads?


My notes