# A minimal extension of Bayesian decision theory

Theory and Decision 80 (3):341-362 (2016)

 Abstract Savage denied that Bayesian decision theory applies in large worlds. This paper proposes a minimal extension of Bayesian decision theory to a large-world context that evaluates an event E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} by assigning it a number π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document} that reduces to an orthodox probability for a class of measurable events. The Hurwicz criterion evaluates π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document} as a weighted arithmetic mean of its upper and lower probabilities, which we derive from the measurable supersets and subsets of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}. The ambiguity aversion reported in experiments on the Ellsberg paradox is then explained by assigning a larger weight to the lower probability of winning than to the upper probability. However, arguments are given here that would make anything but equal weights irrational when using the Hurwicz criterion. The paper continues by embedding the Hurwicz criterion in an extension of expected utility theory that we call expectant utility. Keywords No keywords specified (fix it) Categories (categorize this paper) ISBN(s) DOI 10.1007/s11238-015-9505-0 Options Mark as duplicate Export citation Request removal from index

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 59,916

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)

## References found in this work BETA

The Foundations of Statistics.Leonard J. Savage - 1954 - Wiley Publications in Statistics.

## Similar books and articles

Bayesian Probability.Patrick Maher - 2010 - Synthese 172 (1):119 - 127.
Decision Theory as Philosophy.Mark Kaplan - 1983 - Philosophy of Science 50 (4):549-577.
Biting the Bayesian Bullet: Zeckhauser's Problem.Richard Jeffrey - 1988 - Theory and Decision 25 (2):117-122.
Minimal Extensions of Π01 Classes.Douglas Cenzer & Farzan Riazati - 2005 - Mathematical Logic Quarterly 51 (2):206-216.
Decision Theory and the Rationality of Further Deliberation.Igor Douven - 2002 - Economics and Philosophy 18 (2):303-328.
Rational Decision and Causality.Ellery Eells - 1982 - Cambridge University Press.
A Unified Bayesian Decision Theory.Richard Bradley - 2007 - Theory and Decision 63 (3):233-263,.
Pseudoprojective Strongly Minimal Sets Are Locally Projective.Steven Buechler - 1991 - Journal of Symbolic Logic 56 (4):1184-1194.
Minimal Elementary Extensions of Models of Set Theory and Arithmetic.Ali Enayat - 1990 - Archive for Mathematical Logic 30 (3):181-192.
A Foundation of Bayesian Statistics.R. Kast - 1991 - Theory and Decision 31 (2-3):175-197.
Utility Theory and the Bayesian Paradigm.Jordan Howard Sobel - 1989 - Theory and Decision 26 (3):263-293.