Bosonization and iterative relations beyond field theories

Solitons can be well described by the Lagrange formalism of effective field theories. But usually mass and coupling constants constitute phenomenological dimensions without any relation to the topological processes. This paper starts with a two-spinor Dirac equation in radial symmetry including vector Coulomb and scalar Lorentz potentials, and arrives after bosonization at the sine-Gordon equation. The keys of non-perturbative bosonization are in this case topological phase gradients (topological currents) that can be balanced in iterative processes providing for coupling constants driven by phase averaging and ``noise reduction'' in closed-loops and autoparametric resonance. A fundamental iterative spin-parity-asymmetry and dimensional shift quite near to the electron to proton mass ratio is found that can only be balanced by bosonization including Coulomb interaction.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 47,443
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
13 ( #662,643 of 2,292,020 )

Recent downloads (6 months)
2 ( #573,449 of 2,292,020 )

How can I increase my downloads?


My notes

Sign in to use this feature