Archive for Mathematical Logic 50 (3-4):459-476 (2011)

Abstract
Pour tout entier n, on construit des sous-groupes, infiniment définissables de rang de Lascar ω n , du groupe additif d’un corps séparablement clos
Keywords Separably closed fields  Additive subgroups  Model theory of fields
Categories (categorize this paper)
ISBN(s)
DOI 10.1007/s00153-010-0226-3
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Translate to english
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 58,256
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Minimal Groups in Separably Closed Fields.E. Bouscaren & F. Delon - 2002 - Journal of Symbolic Logic 67 (1):239-259.
Minimal Types in Separably Closed Fields.Zoé Chatzidakis & Carol Wood - 2000 - Journal of Symbolic Logic 65 (3):1443-1450.
Subgroups of the Additive Group of a Separably Closed Field.Thomas Blossier - 2005 - Annals of Pure and Applied Logic 134 (2-3):169-216.
Minimal Groups in Separably Closed Fields. E. Bouscaren & F. Delon - 2002 - Journal of Symbolic Logic 67 (1):239-259.
Minimal Types in Separably Closed Fields.Zoe Chatzidakis & Carol Wood - 2000 - Journal of Symbolic Logic 65 (3):1443-1450.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Corps Et Chirurgie.Anand Pillay & Bruno Poizat - 1995 - Journal of Symbolic Logic 60 (2):528-533.
Sous-Groupes Définissables d'Un Groupe Stable.Bruno Poizat - 1981 - Journal of Symbolic Logic 46 (1):137-146.
Sur la méthode dialectique dans l'étude des groupes restreints.Didier Anzieu - 1962 - Les Etudes Philosophiques 17 (4):501 - 509.

Analytics

Added to PP index
2013-10-27

Total views
114 ( #87,899 of 2,419,602 )

Recent downloads (6 months)
1 ( #542,199 of 2,419,602 )

How can I increase my downloads?

Downloads

My notes