Explainable Artificial Intelligence in Data Science

Minds and Machines 32 (3):485-531 (2022)
  Copy   BIBTEX

Abstract

A widespread need to explain the behavior and outcomes of AI-based systems has emerged, due to their ubiquitous presence. Thus, providing renewed momentum to the relatively new research area of eXplainable AI (XAI). Nowadays, the importance of XAI lies in the fact that the increasing control transference to this kind of system for decision making -or, at least, its use for assisting executive stakeholders- already affects many sensitive realms (as in Politics, Social Sciences, or Law). The decision-making power handover to opaque AI systems makes mandatory explaining those, primarily in application scenarios where the stakeholders are unaware of both the high technology applied and the basic principles governing the technological solutions. The issue should not be reduced to a merely technical problem; the explainer would be compelled to transmit richer knowledge about the system (including its role within the informational ecosystem where he/she works). To achieve such an aim, the explainer could exploit, if necessary, practices from other scientific and humanistic areas. The first aim of the paper is to emphasize and justify the need for a multidisciplinary approach that is beneficiated from part of the scientific and philosophical corpus on Explaining, underscoring the particular nuances of the issue within the field of Data Science. The second objective is to develop some arguments justifying the authors’ bet by a more relevant role of ideas inspired by, on the one hand, formal techniques from Knowledge Representation and Reasoning, and on the other hand, the modeling of human reasoning when facing the explanation. This way, explaining modeling practices would seek a sound balance between the pure technical justification and the explainer-explainee agreement.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,745

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Defining Explanation and Explanatory Depth in XAI.Stefan Buijsman - 2022 - Minds and Machines 32 (3):563-584.

Analytics

Added to PP
2022-05-13

Downloads
42 (#111,429)

6 months
17 (#859,272)

Historical graph of downloads
How can I increase my downloads?