Sub-Theory of Peano Arithmetic

Andrew Boucher
University of Exeter
The system called F is essentially a sub-theory of Frege Arithmetic without the ad infinitum assumption that there is always a next number. In a series of papers (Systems for a Foundation of Arithmetic, True” Arithmetic Can Prove Its Own Consistency and Proving Quadratic Reciprocity) it was shown that F proves a large number of basic arithmetic truths, such as the Euclidean Algorithm, Unique Prime Factorization (i.e. the Fundamental Law of Arithmetic), and Quadratic Reciprocity, indeed a sizable amount of arithmetic. In particular, F proves some (but not all) of the Peano Axioms; that is, F proves the axioms of a sub-theory - call it FPA - of second-order Peano-Arithmetic. This short technical note will demonstrate that the converse also holds, in the following sense. F has the same language as second-order Peano Arithmetic except that, in addition, it has a two-place predicate symbol “Μ”. Then it is possible to provide a definition, indeed a reasonable definition, for “Μ” such that FPA proves all the axioms of F. So F and FPA effectively have the same proof-theoretic strength. In particular FPA, which lacks the Successor Axiom stating that every natural number has a successor, is able to prove the Euclidean Algorithm, Unique Prime Factorization, and Quadratic Reciprocity, indeed (again) a sizable amount of arithmetic.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Translate to english
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 62,363
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
376 ( #22,769 of 2,445,403 )

Recent downloads (6 months)
2 ( #310,973 of 2,445,403 )

How can I increase my downloads?


My notes