"True" arithmetic can prove its own consistency


Authors
Abstract
Using an axiomatization of second-order arithmetic (essentially second-order Peano Arithmetic without the Successor Axiom), arithmetic's basic operations are defined and its fundamental laws, up to unique prime factorization, are proven. Two manners of expressing a system's consistency are presented - the "Godel" consistency, where a wff is represented by a natural number, and the "real" consistency, where a wff is represented as a second-order sequence, which is a stronger notion. It is shown that the system can prove at least its Godel consistency and that closely allied systems can prove their real consistency
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 54,676
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
562 ( #10,007 of 2,386,408 )

Recent downloads (6 months)
1 ( #554,109 of 2,386,408 )

How can I increase my downloads?

Downloads

My notes