Journal of Symbolic Logic 83 (3):1013-1062 (2018)

We investigate which filters onωcan contain towers, that is, a modulo finite descending sequence without any pseudointersection. We prove the following results:Many classical examples of nice tall filters contain no towers.It is consistent that tall analytic P-filters contain towers of arbitrary regular height.It is consistent that all towers generate nonmeager filters, in particular Borel filters do not contain towers.The statement “Every ultrafilter contains towers.” is independent of ZFC.Furthermore, we study many possible logical implications between the existence of towers in filters, inequalities between cardinal invariants of filters $,${\rm{co}}{{\rm{f}}^{\rm{*}}}\left$,${\rm{no}}{{\rm{n}}^{\rm{*}}}\left$, and${\rm{co}}{{\rm{v}}^{\rm{*}}}\left$), and the existence of Luzin type families, that is, if${\cal F}$is a filter then${\cal X} \subseteq {[\omega ]^\omega }$is an${\cal F}$-Luzin family if$\left\{ {X \in {\cal X}:|X \setminus F| = \omega } \right\}$is countable for every$F \in {\cal F}$.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1017/jsl.2017.52
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 62,289
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Mathias–Prikry and Laver–Prikry Type Forcing.Michael Hrušák & Hiroaki Minami - 2014 - Annals of Pure and Applied Logic 165 (3):880-894.
Analytic Ideals and Their Applications.Sławomir Solecki - 1999 - Annals of Pure and Applied Logic 99 (1-3):51-72.
Forcing with Quotients.Michael Hrušák & Jindřich Zapletal - 2008 - Archive for Mathematical Logic 47 (7-8):719-739.
Mob Families and Mad Families.Jörg Brendle - 1998 - Archive for Mathematical Logic 37 (3):183-197.
Near Coherence of Filters. I. Cofinal Equivalence of Models of Arithmetic.Andreas Blass - 1986 - Notre Dame Journal of Formal Logic 27 (4):579-591.

View all 10 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Ordering MAD Families a la Katětov.Michael Hrušák & Salvador García Ferreira - 2003 - Journal of Symbolic Logic 68 (4):1337-1353.
Almost Disjoint Families and Diagonalizations of Length Continuum.Dilip Raghavan - 2010 - Bulletin of Symbolic Logic 16 (2):240 - 260.
Cardinal Invariants of Monotone and Porous Sets.Michael Hrušák & Ondřej Zindulka - 2012 - Journal of Symbolic Logic 77 (1):159-173.
Cardinal Invariants Above the Continuum.James Cummings & Saharon Shelah - 1995 - Annals of Pure and Applied Logic 75 (3):251-268.
Cardinal Invariants Related to Permutation Groups.Bart Kastermans & Yi Zhang - 2006 - Annals of Pure and Applied Logic 143 (1-3):139-146.
Combinatorial Properties of Classical Forcing Notions.Jörg Brendle - 1995 - Annals of Pure and Applied Logic 73 (2):143-170.
Groupwise Density and Related Cardinals.Andreas Blass - 1990 - Archive for Mathematical Logic 30 (1):1-11.
On Two Topological Cardinal Invariants of an Order-Theoretic Flavour.Santi Spadaro - 2012 - Annals of Pure and Applied Logic 163 (12):1865-1871.
Distributive Proper Forcing Axiom and Cardinal Invariants.Huiling Zhu - 2013 - Archive for Mathematical Logic 52 (5-6):497-506.
Cardinal Invariants of Infinite Groups.Jörg Brendle - 1990 - Archive for Mathematical Logic 30 (3):155-170.
Infinitary Combinatorics and Modal Logic.Andreas Blass - 1990 - Journal of Symbolic Logic 55 (2):761-778.


Added to PP index

Total views
13 ( #741,550 of 2,445,237 )

Recent downloads (6 months)
1 ( #457,173 of 2,445,237 )

How can I increase my downloads?


My notes