Abstract
I consider here several versions of finitism or conceptions that try to work around postulating sets of infinite size. Restricting oneself to the so-called potential infinite seems to rest either on temporal readings of infinity (or infinite series) or on anti-realistic background assumptions. Both these motivations may be considered problematic. Quine’s virtual set theory points out where strong assumptions of infinity enter into number theory, but is implicitly committed to infinity anyway. The approaches centring on the indefinitely large and the use of schemata would provide a work-around to circumvent usage of actual infinities if we had a clear
understanding of how schemata work and where to draw the conceptual line
between the indefinitely large and the infinite. Neither of this seems to be clear enough. Versions of strict finitism in contrast provide a clear picture of a (realistic) finite number theory. One can recapture standard arithmetic without being committed to actual infinities. The major problem of them is their usage of a paraconsistent logic with an accompanying theory of inconsistent objects. If we are, however, already using a paraconsistent approach for other reasons (in semantics, epistemology or set theory), we get finitism for free. This strengthens the case
for paraconsistency.