Learning to coordinate behaviors

Abstract
We describe an algorithm which allows a behavior-based robot to learn on the basis of positive and negative feedback when to activate its behaviors. In accordance with the philosophy of behavior-based robots, the algorithm is completely distributed: each of the behaviors independently tries to find out (i) whether it is relevant (ie. whether it is at all correlated to positive feedback) and (ii) what the conditions are under which it becomes reliable (i.e. the conditions under which i t maximizes the probability of receiving positive feedback and minimizes the probability of receiving negative feedback). The algorithm has been tested successfully on an autonomous 6-legged robot which had to learn how to coordinate its legs so as to walk forward.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 31,856
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index
2009-01-28

Total downloads
34 ( #172,247 of 2,231,870 )

Recent downloads (6 months)
5 ( #120,614 of 2,231,870 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature