An Evidence Logic Perspective on Schotch-Jennings Forcing

In Helle Hvid Hansen, Andre Scedrov & Ruy J. G. B. De Queiroz (eds.), Logic, Language, Information, and Computation: 29th International Workshop, WoLLIC 2023, Halifax, NS, Canada, July 11–14, 2023, Proceedings. Springer Nature Switzerland. pp. 135-160 (2023)
  Copy   BIBTEX

Abstract

Traditional epistemic and doxastic logics cannot deal with inconsistent beliefs nor do they represent the evidence an agent possesses. So-called ‘evidence logics’ have been introduced to deal with both of those issues. The semantics of these logics are based on neighbourhood or hypergraph frames. The neighbourhoods of a world represent the basic evidence available to an agent. On one view, beliefs supported by evidence are propositions derived from all maximally consistent collections evidence. An alternative concept of beliefs takes them to be propositions derivable from consistent partitions of one’s inconsistent evidence; this is known as Schotch-Jennings Forcing. This paper develops a modal logic based on the hypergraph semantics to represent Schotch-Jennings Forcing. The modal language includes an operator U(φ1,…,φn;ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\varphi _1, \ldots, \varphi _n;\psi )$$\end{document} which is similar to one introduced in Instantial Neighbourhood Logic. It is of variable arity and the input formulas enjoy distinct roles. The U operator expresses that all evidence at a particular world that supports ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} can be supported by at least one of the φi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _i$$\end{document}s. U can then be used to express that all the evidence available can be unified by the finite set of formulas φ1,…,φn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _1,\ldots, \varphi _n$$\end{document} if ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is taken to be ⊤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\top $$\end{document}. Future developments will then use that semantics as the basis for a doxastic logic akin to evidence logics.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,019

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.

Analytics

Added to PP
2023-08-31

Downloads
18 (#1,098,808)

6 months
5 (#1,011,143)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references