Distributive Lattices with a Negation Operator

Mathematical Logic Quarterly 45 (2):207-218 (1999)

Abstract
In this note we introduce and study algebras of type such that is a bounded distributive lattice and ⌝ is an operator that satisfies the condition ⌝ = a ⌝ b and ⌝ 0 = 1. We develop the topological duality between these algebras and Priestley spaces with a relation. In addition, we characterize the congruences and the subalgebras of such an algebra. As an application, we will determine the Priestley spaces of quasi-Stone algebras
Keywords De Morgan algebra  Priestley space  Bounded distributive lattice  p‐algebra  Modal operator  Quasi‐Stone algebra
Categories (categorize this paper)
DOI 10.1002/malq.19990450206
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 38,878
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Varieties of Complex Algebras.Robert Goldblatt - 1989 - Annals of Pure and Applied Logic 44 (3):173-242.
Quasi‐Stone Algebras.Nalinaxi H. Sankappanavar & Hanamantagouda P. Sankappanavar - 1993 - Mathematical Logic Quarterly 39 (1):255-268.
Distributive Lattices with an Operator.Alejandro Petrovich - 1996 - Studia Logica 56 (1-2):205 - 224.
Semi-Demorgan Algebras.David Hobby - 1996 - Studia Logica 56 (1-2):151 - 183.
Distributive Lattices.Raymond Balbes & Philip Dwinger - 1977 - Journal of Symbolic Logic 42 (4):587-588.

Add more references

Citations of this work BETA

Weak-Quasi-Stone Algebras.Sergio A. Celani & Leonardo M. Cabrer - 2009 - Mathematical Logic Quarterly 55 (3):288-298.
Weak‐Quasi‐Stone Algebras.Sergio A. Celani & Leonardo M. Cabrer - 2009 - Mathematical Logic Quarterly 55 (3):288-298.

Add more citations

Similar books and articles

Bounded Distributive Lattices with Strict Implication.Sergio Celani & Ramon Jansana - 2005 - Mathematical Logic Quarterly 51 (3):219-246.
Quasi‐Stone Algebras.Nalinaxi H. Sankappanavar & Hanamantagouda P. Sankappanavar - 1993 - Mathematical Logic Quarterly 39 (1):255-268.
Distributive Lattices with an Operator.Alejandro Petrovich - 1996 - Studia Logica 56 (1-2):205 - 224.
Infinite Substructure Lattices of Models of Peano Arithmetic.James H. Schmerl - 2010 - Journal of Symbolic Logic 75 (4):1366-1382.
On Varieties of Biresiduation Algebras.C. J. van Alten - 2006 - Studia Logica 83 (1-3):425-445.
The Prime Spectrum of an MV‐Algebra.L. P. Belluce, Antonio Di Nola & Salvatore Sessa - 1994 - Mathematical Logic Quarterly 40 (3):331-346.
Kripke Models for Linear Logic.Gerard Allwein & J. Michael Dunn - 1993 - Journal of Symbolic Logic 58 (2):514-545.
Free Modal Lattices Via Priestley Duality.Claudia B. Wegener - 2002 - Studia Logica 70 (3):339 - 352.
Algebraic Functions.M. Campercholi & D. Vaggione - 2011 - Studia Logica 98 (1-2):285-306.
Filter Distributive Logics.Janusz Czelakowski - 1984 - Studia Logica 43 (4):353 - 377.

Analytics

Added to PP index
2014-01-16

Total views
22 ( #328,772 of 2,319,058 )

Recent downloads (6 months)
3 ( #419,809 of 2,319,058 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature