Aligning Semantic Graphs for Textual Inference and Machine Reading

This paper presents our work on textual inference and situates it within the context of the larger goals of machine reading. The textual inference task is to determine if the meaning of one text can be inferred from the meaning of another and from background knowledge. Our system generates semantic graphs as a representation of the meaning of a text. This paper presents new results for aligning pairs of semantic graphs, and proposes the application of natural logic to derive inference decisions from those aligned pairs. We consider this work as first steps toward a system able to demonstrate broad-coverage text understanding and learning abilities.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Translate to english
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 26,173
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

11 ( #395,383 of 2,152,597 )

Recent downloads (6 months)

1 ( #399,611 of 2,152,597 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums