Indestructibility properties of remarkable cardinals

Archive for Mathematical Logic 54 (7-8):961-984 (2015)
  Copy   BIBTEX

Abstract

Remarkable cardinals were introduced by Schindler, who showed that the existence of a remarkable cardinal is equiconsistent with the assertion that the theory of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}$$\end{document} is absolute for proper forcing :176–184, 2000). Here, we study the indestructibility properties of remarkable cardinals. We show that if κ is remarkable, then there is a forcing extension in which the remarkability of κ becomes indestructible by all <κ-closed ≤κ-distributive forcing and all two-step iterations of the form Add∗R˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Add*\dot{\mathbb R}}$$\end{document}, where R˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\mathbb R}}$$\end{document} is forced to be <κ-closed and ≤κ-distributive. In the process, we introduce the notion of a remarkable Laver function and show that every remarkable cardinal carries such a function. We also show that remarkability is preserved by the canonical forcing of the GCH.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 106,010

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Σ1-wellorders without collapsing.Peter Holy - 2015 - Archive for Mathematical Logic 54 (3-4):453-462.
Strong tree properties for two successive cardinals.Laura Fontanella - 2012 - Archive for Mathematical Logic 51 (5-6):601-620.
Indestructibility and destructible measurable cardinals.Arthur W. Apter - 2016 - Archive for Mathematical Logic 55 (1-2):3-18.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.

Analytics

Added to PP
2016-02-04

Downloads
53 (#452,828)

6 months
5 (#852,615)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Citations of this work

On c-extendible cardinals.Konstantinos Tsaprounis - 2018 - Journal of Symbolic Logic 83 (3):1112-1131.

Add more citations

References found in this work

Ramsey-like cardinals II.Victoria Gitman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):541-560.
Proper forcing and remarkable cardinals.Ralf-Dieter Schindler - 2000 - Bulletin of Symbolic Logic 6 (2):176-184.
The wholeness axiom and Laver sequences.Paul Corazza - 2000 - Annals of Pure and Applied Logic 105 (1-3):157-260.
Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.

View all 8 references / Add more references