Archive for Mathematical Logic 54 (7-8):961-984 (2015)
Authors | |
Abstract |
Remarkable cardinals were introduced by Schindler, who showed that the existence of a remarkable cardinal is equiconsistent with the assertion that the theory of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}$$\end{document} is absolute for proper forcing :176–184, 2000). Here, we study the indestructibility properties of remarkable cardinals. We show that if κ is remarkable, then there is a forcing extension in which the remarkability of κ becomes indestructible by all <κ-closed ≤κ-distributive forcing and all two-step iterations of the form Add∗R˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Add*\dot{\mathbb R}}$$\end{document}, where R˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\mathbb R}}$$\end{document} is forced to be <κ-closed and ≤κ-distributive. In the process, we introduce the notion of a remarkable Laver function and show that every remarkable cardinal carries such a function. We also show that remarkability is preserved by the canonical forcing of the GCH.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
ISBN(s) | |
DOI | 10.1007/s00153-015-0453-8 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
On Certain Indestructibility of Strong Cardinals and a Question of Hajnal.Moti Gitik & Saharon Shelah - 1989 - Archive for Mathematical Logic 28 (1):35-42.
Ramsey-Like Cardinals II.Victoria Gitman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):541-560.
Proper Forcing and Remarkable Cardinals.Ralf-Dieter Schindler - 2000 - Bulletin of Symbolic Logic 6 (2):176-184.
Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.
Diamond (on the Regulars) Can Fail at Any Strongly Unfoldable Cardinal.Mirna Džamonja & Joel David Hamkins - 2006 - Annals of Pure and Applied Logic 144 (1-3):83-95.
View all 8 references / Add more references
Citations of this work BETA
On C-Extendible Cardinals.Konstantinos Tsaprounis - 2018 - Journal of Symbolic Logic 83 (3):1112-1131.
Similar books and articles
On the Indestructibility Aspects of Identity Crisis.Grigor Sargsyan - 2009 - Archive for Mathematical Logic 48 (6):493-513.
Universal Indestructibility for Degrees of Supercompactness and Strongly Compact Cardinals.Arthur W. Apter & Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (2):133-142.
Indestructibility, Measurability, and Degrees of Supercompactness.Arthur W. Apter - 2012 - Mathematical Logic Quarterly 58 (1):75-82.
Proper Forcing and Remarkable Cardinals II.Ralf-Dieter Schindler - 2001 - Journal of Symbolic Logic 66 (3):1481-1492.
Reducing the Consistency Strength of an Indestructibility Theorem.Arthur W. Apter - 2008 - Mathematical Logic Quarterly 54 (3):288-293.
Indestructibility and Measurable Cardinals with Few and Many Measures.Arthur W. Apter - 2008 - Archive for Mathematical Logic 47 (2):101-110.
Strongly Unfoldable Cardinals Made Indestructible.Thomas A. Johnstone - 2008 - Journal of Symbolic Logic 73 (4):1215-1248.
Indestructibility of Vopěnka’s Principle.Andrew D. Brooke-Taylor - 2011 - Archive for Mathematical Logic 50 (5-6):515-529.
Indestructibility and Level by Level Equivalence and Inequivalence.Arthur W. Apter - 2007 - Mathematical Logic Quarterly 53 (1):78-85.
Indestructibility and Destructible Measurable Cardinals.Arthur W. Apter - 2016 - Archive for Mathematical Logic 55 (1-2):3-18.
Double Helix in Large Large Cardinals and Iteration of Elementary Embeddings.Kentaro Sato - 2007 - Annals of Pure and Applied Logic 146 (2):199-236.
An Equiconsistency for Universal Indestructibility.Arthur W. Apter & Grigor Sargsyan - 2010 - Journal of Symbolic Logic 75 (1):314-322.
Making All Cardinals Almost Ramsey.Arthur W. Apter & Peter Koepke - 2008 - Archive for Mathematical Logic 47 (7-8):769-783.
Analytics
Added to PP index
2016-02-04
Total views
26 ( #439,283 of 2,507,895 )
Recent downloads (6 months)
1 ( #416,715 of 2,507,895 )
2016-02-04
Total views
26 ( #439,283 of 2,507,895 )
Recent downloads (6 months)
1 ( #416,715 of 2,507,895 )
How can I increase my downloads?
Downloads