Large-scale optimization of neuron arbors


Abstract
At the global as well as local scales, some of the geometry of types of neuron arbors—both dendrites and axons—appears to be self-organizing: Their morphogenesis behaves like flowing water, that is, fluid dynamically; waterflow in branching networks in turn acts like a tree composed of cords under tension, that is, vector mechanically. Branch diameters and angles and junction sites conform significantly to this model. The result is that such neuron tree samples globally minimize their total volume—rather than, for example, surface area or branch length. In addition, the arbors perform well at generating the cheapest topology interconnecting their terminals: their large-scale layouts are among the best of all such possible connecting patterns, approaching 5% of optimum. This model also applies comparably to arterial and river networks. S1063-651X 99 16205-6..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 44,462
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
39 ( #220,782 of 2,273,203 )

Recent downloads (6 months)
1 ( #826,598 of 2,273,203 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature