On the Cantor-bendixon rank of recursively enumerable sets

Journal of Symbolic Logic 58 (2):629-640 (1993)

Abstract
The main result of this paper is to show that for every recursive ordinal α ≠ 0 and for every nonrecursive r.e. degree d there is a r.e. set of rank α and degree d
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275223
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 40,066
Through your library

References found in this work BETA

Countable Thin Π01 Classes.Douglas Cenzer, Rodney Downey, Carl Jockusch & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 59 (2):79-139.
On $\Pi^0_1$ Classes and Their Ranked Points.Rod Downey - 1991 - Notre Dame Journal of Formal Logic 32 (4):499-512.
Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
Classical Recursion Theory.P. G. Odifreddi - 2001 - Bulletin of Symbolic Logic 7 (1):71-73.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

On the Orbits of Hyperhypersimple Sets.Wolfgang Maass - 1984 - Journal of Symbolic Logic 49 (1):51-62.
On Recursive Enumerability with Finite Repetitions.Stephan Wehner - 1999 - Journal of Symbolic Logic 64 (3):927-945.
Recursive Constructions in Topological Spaces.Iraj Kalantari & Allen Retzlaff - 1979 - Journal of Symbolic Logic 44 (4):609-625.
Complementation in the Turing Degrees.Theodore A. Slaman & John R. Steel - 1989 - Journal of Symbolic Logic 54 (1):160-176.
Recursively Enumerable Generic Sets.Wolfgang Maass - 1982 - Journal of Symbolic Logic 47 (4):809-823.

Analytics

Added to PP index
2009-01-28

Total views
16 ( #488,479 of 2,236,371 )

Recent downloads (6 months)
3 ( #585,669 of 2,236,371 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature