Abstract
In "Mathematical Truth", Paul Benacerraf articulated an epistemological problem for mathematical realism. His formulation of the problem relied on a causal theory of knowledge which is now widely rejected. But it is generally agreed that Benacerraf was onto a genuine problem for mathematical realism nevertheless. Hartry Field describes it as the problem of explaining the reliability of our mathematical beliefs, realistically construed. In this paper, I argue that the Benacerraf Problem cannot be made out. There simply is no intelligible problem that satisfies all of the constraints which have been placed on the Benacerraf Problem. The point generalizes to all arguments with the structure of the Benacerraf Problem aimed at realism about a domain meeting certain conditions. Such arguments include so-called "Evolutionary Debunking Arguments" aimed at moral realism. I conclude with some suggestions about the relationship between the Benacerraf Problem and the Gettier Problem.