Abstract
The ability to process events in their temporal and sequential context is a fundamental skill made mandatory by constant interaction with a dynamic environment. Sequence learning studies have demonstrated that subjects exhibit detailed — and often implicit — sensitivity to the sequential structure of streams of stimuli. Current connectionist models of performance in the so-called Serial Reaction Time Task (SRT), however, fail to capture the fact that sequence learning can be based not only on sensitivity to the sequential associations between successive stimuli, but also on sensitivity to the associations between successive responses, and on the predictive relationships that exist between these sequences of responses and their effects in the environment. In this paper, we offer an initial exploration of an alternative architecture for sequence learning, based on the principles of Forward Models.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 65,714
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
39 ( #281,350 of 2,462,717 )

Recent downloads (6 months)
1 ( #449,387 of 2,462,717 )

How can I increase my downloads?

Downloads

My notes