Archive for Mathematical Logic 54 (5-6):491-510 (2015)
Authors |
|
Abstract |
We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-supercompact, for any desired θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}. In addition, we prove several global results showing how the entire class of weakly compactcardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or with the class of nearly θκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta_\kappa}$$\end{document}-supercompact cardinals κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, for nearly any desired function κ↦θκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa\mapsto\theta_\kappa}$$\end{document}. These results answer several questions that had been open in the literature and extend to these large cardinals the identity-crises phenomenon, first identified by Magidor with the strongly compact cardinals.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | 10.1007/s00153-015-0423-1 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
The Lottery Preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
How Large is the First Strongly Compact Cardinal? Or a Study on Identity Crises.Menachem Magidor - 1976 - Annals of Mathematical Logic 10 (1):33-57.
Ramsey-Like Cardinals II.Victoria Gitman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):541-560.
View all 12 references / Add more references
Citations of this work BETA
Large Cardinals Need Not Be Large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
Characterizations of the Weakly Compact Ideal on Pλ.Brent Cody - 2020 - Annals of Pure and Applied Logic 171 (6):102791.
Similar books and articles
Inner Models with Large Cardinal Features Usually Obtained by Forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.
Diamond (on the Regulars) Can Fail at Any Strongly Unfoldable Cardinal.Mirna Džamonja & Joel David Hamkins - 2006 - Annals of Pure and Applied Logic 144 (1-3):83-95.
More on the Least Strongly Compact Cardinal.Arthur W. Apter - 1997 - Mathematical Logic Quarterly 43 (3):427-430.
Strongly Unfoldable Cardinals Made Indestructible.Thomas A. Johnstone - 2008 - Journal of Symbolic Logic 73 (4):1215-1248.
Indestructible Weakly Compact Cardinals and the Necessity of Supercompactness for Certain Proof Schemata.J. D. Hamkins & A. W. Apter - 2001 - Mathematical Logic Quarterly 47 (4):563-572.
Patterns of Compact Cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.
A Remark on Weakly Compact Cardinals.Tapani Hyttinen - 2002 - Mathematical Logic Quarterly 48 (3):397-402.
The Least Measurable Can Be Strongly Compact and Indestructible.Arthur W. Apter & Moti Gitik - 1998 - Journal of Symbolic Logic 63 (4):1404-1412.
Two Weak Consequences of 0#. [REVIEW]M. Gitik, M. Magidor & H. Woodin - 1985 - Journal of Symbolic Logic 50 (3):597 - 603.
On Measurable Limits of Compact Cardinals.Arthur W. Apter - 1999 - Journal of Symbolic Logic 64 (4):1675-1688.
Chain Conditions of Products, and Weakly Compact Cardinals.Assaf Rinot - 2014 - Bulletin of Symbolic Logic 20 (3):293-314,.
Indestructibility, Instances of Strong Compactness, and Level by Level Inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.
Abstract Logic and Set Theory. II. Large Cardinals.Jouko Väänänen - 1982 - Journal of Symbolic Logic 47 (2):335-346.
Analytics
Added to PP index
2015-03-20
Total views
25 ( #457,904 of 2,517,891 )
Recent downloads (6 months)
1 ( #409,045 of 2,517,891 )
2015-03-20
Total views
25 ( #457,904 of 2,517,891 )
Recent downloads (6 months)
1 ( #409,045 of 2,517,891 )
How can I increase my downloads?
Downloads