Archive for Mathematical Logic 54 (5-6):491-510 (2015)

Authors
Joel David Hamkins
Oxford University
Abstract
We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-supercompact, for any desired θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}. In addition, we prove several global results showing how the entire class of weakly compactcardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or with the class of nearly θκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta_\kappa}$$\end{document}-supercompact cardinals κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, for nearly any desired function κ↦θκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa\mapsto\theta_\kappa}$$\end{document}. These results answer several questions that had been open in the literature and extend to these large cardinals the identity-crises phenomenon, first identified by Magidor with the strongly compact cardinals.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/s00153-015-0423-1
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 71,172
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

The Lottery Preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
Saturated Ideals.Kenneth Kunen - 1978 - Journal of Symbolic Logic 43 (1):65-76.
The Ground Axiom.Jonas Reitz - 2007 - Journal of Symbolic Logic 72 (4):1299 - 1317.
Ramsey-Like Cardinals II.Victoria Gitman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):541-560.

View all 12 references / Add more references

Citations of this work BETA

Large Cardinals Need Not Be Large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
Characterizations of the Weakly Compact Ideal on Pλ.Brent Cody - 2020 - Annals of Pure and Applied Logic 171 (6):102791.

Add more citations

Similar books and articles

Weakly Measurable Cardinals.Jason A. Schanker - 2011 - Mathematical Logic Quarterly 57 (3):266-280.
More on the Least Strongly Compact Cardinal.Arthur W. Apter - 1997 - Mathematical Logic Quarterly 43 (3):427-430.
Strongly Unfoldable Cardinals Made Indestructible.Thomas A. Johnstone - 2008 - Journal of Symbolic Logic 73 (4):1215-1248.
Patterns of Compact Cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.
A Remark on Weakly Compact Cardinals.Tapani Hyttinen - 2002 - Mathematical Logic Quarterly 48 (3):397-402.
Two Weak Consequences of 0#. [REVIEW]M. Gitik, M. Magidor & H. Woodin - 1985 - Journal of Symbolic Logic 50 (3):597 - 603.
On Measurable Limits of Compact Cardinals.Arthur W. Apter - 1999 - Journal of Symbolic Logic 64 (4):1675-1688.
Chain Conditions of Products, and Weakly Compact Cardinals.Assaf Rinot - 2014 - Bulletin of Symbolic Logic 20 (3):293-314,.
Orders of Indescribable Sets.Alex Hellsten - 2006 - Archive for Mathematical Logic 45 (6):705-714.
Abstract Logic and Set Theory. II. Large Cardinals.Jouko Väänänen - 1982 - Journal of Symbolic Logic 47 (2):335-346.

Analytics

Added to PP index
2015-03-20

Total views
25 ( #457,904 of 2,517,891 )

Recent downloads (6 months)
1 ( #409,045 of 2,517,891 )

How can I increase my downloads?

Downloads

My notes