Lorenzen's Proof of Consistency for Elementary Number Theory

History and Philosophy of Logic 41 (3):281-290 (2020)
  Copy   BIBTEX


We present a manuscript of Paul Lorenzen that provides a proof of consistency for elementary number theory as an application of the construction of the free countably complete pseudocomplemented semilattice over a preordered set. This manuscript rests in the Oskar-Becker-Nachlass at the Philosophisches Archiv of Universität Konstanz, file OB 5-3b-5. It has probably been written between March and May 1944. We also compare this proof to Gentzen's and Novikov's, and provide a translation of the manuscript.



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On the philosophical significance of consistency proofs.Michael D. Resnik - 1974 - Journal of Philosophical Logic 3 (1/2):133 - 147.
On the original Gentzen consistency proof for number theory.Manfred Szabo - 1970 - In A. Kino, John Myhill & Richard Eugene Vesley (eds.), Intuitionism and proof theory. Amsterdam,: North-Holland Pub. Co.. pp. 409.
A Simple Proof that Super-Consistency Implies Cut Elimination.Gilles Dowek & Olivier Hermant - 2012 - Notre Dame Journal of Formal Logic 53 (4):439-456.
Saturation and Σ₂-transfer for ERNA.Chris Impens - 2009 - Journal of Symbolic Logic 74 (3):901-913.
Probability in Logic. [REVIEW]R. A. A. - 1957 - Review of Metaphysics 11 (2):348-348.
Perfect trees and elementary embeddings.Sy-David Friedman & Katherine Thompson - 2008 - Journal of Symbolic Logic 73 (3):906-918.
Short Proofs for Slow Consistency.Anton Freund & Fedor Pakhomov - 2020 - Notre Dame Journal of Formal Logic 61 (1):31-49.


Added to PP

25 (#616,937)

6 months
10 (#251,846)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Stefan Neuwirth
Université de Franche-Comté

Citations of this work

No citations found.

Add more citations