Space of valuations

Annals of Pure and Applied Logic 157 (2-3):97-109 (2009)
  Copy   BIBTEX

Abstract

The general framework of this paper is a reformulation of Hilbert’s program using the theory of locales, also known as formal or point-free topology [P.T. Johnstone, Stone Spaces, in: Cambridge Studies in Advanced Mathematics, vol. 3, 1982; Th. Coquand, G. Sambin, J. Smith, S. Valentini, Inductively generated formal topologies, Ann. Pure Appl. Logic 124 71–106; G. Sambin, Intuitionistic formal spaces–a first communication, in: D. Skordev , Mathematical Logic and its Applications, Plenum, New York, 1987, pp. 187–204]. Formal topology presents a topological space, not as a set of points, but as a logical theory which describes the lattice of open sets. The application to Hilbert’s program is then the following. Hilbert’s ideal objects are represented by points of such a formal space. There are general methods to “eliminate” the use of points, close to the notion of forcing and to the “elimination of choice sequences” in intuitionist mathematics, which correspond to Hilbert’s required elimination of ideal objects. This paper illustrates further this general program on the notion of valuations. They were introduced by Dedekind and Weber [R. Dedekind, H. Weber, Theorie des algebraischen Funktionen einer Veränderlichen, J. de Crelle t. XCII 181–290] to give a rigorous presentation of Riemann surfaces. It can be argued that it is one of the first example in mathematics of point-free representation of spaces [N. Bourbaki, Eléments de Mathématique. Algèbre commutative, Hermann, Paris, 1965, Chapitre 7]. It is thus of historical and conceptual interest to be able to represent this notion in formal topology

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 106,621

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Aspects of general topology in constructive set theory.Peter Aczel - 2006 - Annals of Pure and Applied Logic 137 (1-3):3-29.
Aspects of general topology in constructive set theory.Peter Azcel - 2006 - Annals of Pure and Applied Logic 137 (1-3):3-29.
Inductively generated formal topologies.Thierry Coquand, Giovanni Sambin, Jan Smith & Silvio Valentini - 2003 - Annals of Pure and Applied Logic 124 (1-3):71-106.
On the formal points of the formal topology of the binary tree.Silvio Valentini - 2002 - Archive for Mathematical Logic 41 (7):603-618.
Maximal and partial points in formal spaces.Erik Palmgren - 2006 - Annals of Pure and Applied Logic 137 (1-3):291-298.
A constructive semantics for non-deducibility.Francesco Ciraulo - 2008 - Mathematical Logic Quarterly 54 (1):35-48.
The problem of the formalization of constructive topology.Silvio Valentini - 2005 - Archive for Mathematical Logic 44 (1):115-129.
Formal Zariski topology: positivity and points.Peter Schuster - 2006 - Annals of Pure and Applied Logic 137 (1-3):317-359.
Is There a “Hilbert Thesis”?Reinhard Kahle - 2019 - Studia Logica 107 (1):145-165.

Analytics

Added to PP
2013-12-22

Downloads
44 (#565,781)

6 months
9 (#450,069)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

Constructive mathematics.Douglas Bridges - 2008 - Stanford Encyclopedia of Philosophy.
Conservation as Translation.Giulio Fellin & Peter Schuster - 2025 - Review of Symbolic Logic 18 (1):316-348.
Fundamental results for pointfree convex geometry.Yoshihiro Maruyama - 2010 - Annals of Pure and Applied Logic 161 (12):1486-1501.

Add more citations

References found in this work

Inductively generated formal topologies.Thierry Coquand, Giovanni Sambin, Jan Smith & Silvio Valentini - 2003 - Annals of Pure and Applied Logic 124 (1-3):71-106.
The genesis of ideal theory.Harold M. Edwards - 1980 - Archive for History of Exact Sciences 23 (4):321-378.
Minimal invariant spaces in formal topology.Thierry Coquand - 1997 - Journal of Symbolic Logic 62 (3):689-698.

Add more references