Thermodynamic study of motor behaviour optimization

Acta Biotheoretica 42 (2-3):187-201 (1994)

Abstract

Our work is aimed at studying the optimization of a complex motor behaviour from a global perspective. First, free climbing as a sport will be briefly introduced while emphasizing in particular its psychomotor aspect called route finding. The basic question raised here is how does the optimization of a sensorimotoricity-environment system take place. The material under study is the free climber's trajectory, viewed as the signature of climbing behaviour (i.e., the spatial dimension). The concepts of learning, optimization, constraint, and degrees of freedom of a system will be discussed using the synergistic approach to the study of movement (Bernstein, 1967; Kelso, 1977). Measures of a trajectory's length and convex hull can be used to define an index whose equation resembles that of an entropy. This index is a measure of the trajectory's overall complexity. Some important concepts related to the thermodynamics of curves will also be discussed. The optimization process will be studied by examining the changes in entropy over time for a set of trajectories generated during the learning of a route (ten successive repetitions of the same climb). It will be shown that the entropy of the trajectories decreases as learning progresses, that each level of expertise has its own characteristic entropy curve, and that for the subjects tested, the mean entropy of skilled climbers is lower than that of average climbers. Basing our analysis on the concepts of degrees of freedom and constraint equations, an attempt is made to relate trajectory entropy to system entropy. Based on the postulate that trajectory entropy is equal to the difference in entropy between the unconstrained and constrained system, a model of motor optimization is proposed. This model is illustrated by an entropy graph reflecting a dynamic release process. In the light of our results, two opposing views will be examined: movement construction vs. movement emergence.

Download options

PhilArchive



    Upload a copy of this work     Papers currently archived: 72,805

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
47 (#245,173)

6 months
1 (#386,031)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references

Similar books and articles